Given:
Objective (period-t consumer): \[ W_t=\ln c_t+\frac{1}{1+\theta}\,\ln c_{t+1}, \] Budget constraint: \[ c_t+\frac{c_{t+1}}{1+r}\le y_t+\frac{y_{t+1}}{1+r}. \] Interior optimum, \(\theta=0.05,\; r=0.08\). Find \(\dfrac{c_{t+1}}{c_t}\) (to 2 d.p.).
Step 1 β Lagrangian
\[ \mathcal{L}=\ln c_t+\frac{1}{1+\theta}\ln c_{t+1} +\lambda\!\left(y_t+\frac{y_{t+1}}{1+r}-c_t-\frac{c_{t+1}}{1+r}\right). \] FOCs:
\[ \frac{\partial\mathcal{L}}{\partial c_t}=\frac{1}{c_t}-\lambda=0 \quad\Rightarrow\quad \lambda=\frac{1}{c_t}. \] \[ \frac{\partial\mathcal{L}}{\partial c_{t+1}}=\frac{1}{1+\theta}\cdot\frac{1}{c_{t+1}} -\lambda\cdot\frac{1}{1+r}=0. \] Substitute \(\lambda=\dfrac{1}{c_t}\): \[ \frac{1}{1+\theta}\cdot\frac{1}{c_{t+1}} =\frac{1}{c_t}\cdot\frac{1}{1+r}. \] Rearrange for the consumption ratio: \[ \frac{c_{t+1}}{c_t}=(1+r)\cdot\frac{1}{1+\theta} =\frac{1+r}{1+\theta}. \] Step 2 β Substitute numbers
\[ \frac{c_{t+1}}{c_t}=\frac{1+0.08}{1+0.05}=\frac{1.08}{1.05}=1.028571\ldots \] Final answer (rounded to 2 d.p.):
\[ \boxed{\;\dfrac{c_{t+1}}{c_t}=1.03\;} \]
Which of the following are applicable to the individual's expenditure function?
(A) It is homogeneous of degree zero in all prices.
(B) It represents the maximum expenditure to achieve a given level of utility.
(C) It is non-decreasing in prices.
(D) It is concave in prices.
Choose the correct answer from the options given below:
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |