Use the identity:
\[
\tan\left(\frac{A}{2}\right) = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}}
\]
Let \( a \) be unknown, and compute \( s = \frac{a + 5 + 6}{2} = \frac{a + 11}{2} \)
Now plug into the formula:
\[
\frac{1}{\sqrt{2}} = \sqrt{ \frac{(s - 5)(s - 6)}{s(s - a)} }
\]
Square both sides:
\[
\frac{1}{2} = \frac{(s - 5)(s - 6)}{s(s - a)}
\]
Now plug \( s = \frac{a + 11}{2} \) into all terms and simplify:
Let’s just substitute and simplify:
\[
s = \frac{a + 11}{2}, \quad s - 5 = \frac{a + 1}{2}, \quad s - 6 = \frac{a - 1}{2}, \quad s - a = \frac{11 - a}{2}
\]
So:
\[
\begin{align}
\frac{1}{2} = \frac{\left(\frac{a + 1}{2}\right)\left(\frac{a - 1}{2}\right)}{\left(\frac{a + 11}{2}\right)\left(\frac{11 - a}{2}\right)}
= \frac{(a^2 - 1)/4}{(121 - a^2)/4}
= \frac{a^2 - 1}{121 - a^2}
\]
Cross-multiply:
\[
a^2 - 1 = \frac{1}{2}(121 - a^2) \Rightarrow 2(a^2 - 1) = 121 - a^2
\Rightarrow 2a^2 - 2 = 121 - a^2 \Rightarrow 3a^2 = 123 \Rightarrow a^2 = 41 \Rightarrow a = \sqrt{41}
\]