Step 1: Use cosine rule relations.
In triangle \(ABC\),
\[
\cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad
\cos C = \frac{a^2 + b^2 - c^2}{2ab}
\]
Step 2: Compute \(\cos A - \cos C\).
\[
\cos A - \cos C
= \frac{(b^2 + c^2 - a^2)a - (a^2 + b^2 - c^2)c}{2abc}
= \frac{(a-c)(b^2 - (a-c)^2)}{2abc}
\]
Hence,
\[
\frac{\cos A - \cos C}{a-c} = \frac{b^2 - (a-c)^2}{2abc}
\]
Step 3: Add \(\dfrac{\cos B}{b}\).
Using \(\cos B = \dfrac{a^2 + c^2 - b^2}{2ac}\), we get
\[
\frac{\cos B}{b} = \frac{a^2 + c^2 - b^2}{2abc}
\]
Step 4: Simplify.
Adding both terms,
\[
\frac{b^2 - (a-c)^2 + a^2 + c^2 - b^2}{2abc}
= \frac{-2ac}{2abc}
= -\frac{1}{b}
\]