Question:

In a triangle \( ABC \), the identity holds: \[ \tan\frac{A}{2} \tan\frac{B}{2} + \tan\frac{B}{2} \tan\frac{C}{2} + \tan\frac{C}{2} \tan\frac{A}{2} = ? \]

Show Hint

This identity is specific to triangle angle half tangents. Memorize this for quick substitution in triangle trigonometry problems.
Updated On: May 17, 2025
  • \( 0 \)
  • \( 1 \)
  • \( \frac{1}{2} \)
  • \( \pi \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

In any triangle, the identity involving tangents of half angles is: \[ \tan\frac{A}{2} \tan\frac{B}{2} + \tan\frac{B}{2} \tan\frac{C}{2} + \tan\frac{C}{2} \tan\frac{A}{2} = 1 \] This is a standard trigonometric identity derived from: \[ \begin{align} \tan\frac{A}{2} \tan\frac{B}{2} + \tan\frac{B}{2} \tan\frac{C}{2} + \tan\frac{C}{2} \tan\frac{A}{2} = \frac{(s - b)(s - c)}{s(s - a)} + \cdots \Rightarrow \text{Sum } = 1 \]
Was this answer helpful?
0
0