Step 1: Given Data
We are given a triangle \( ABC \) with the following sides:
- \( AB = \sqrt{23} \)
- \( BC = 3 \)
- \( CA = 4 \)
We are asked to find the value of \( \frac{\cot A + \cot C}{\cot B} \).
Step 2: Applying the Cotangent Formula
The cotangent of an angle in a triangle can be expressed using the law of cosines and the sides of the triangle. Specifically:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}}
\]
We can rewrite this expression using the formula for cosine in terms of the sides of the triangle:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{b^2 + c^2 - a^2}{2bc} + \frac{a^2 + b^2 - c^2}{2ab}}{\frac{c^2 + a^2 - b^2}{2ac}}
\]
Step 3: Simplifying the Expression
Now, simplifying the above expression, we have:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{b^2 + c^2 - a^2}{4\Delta} + \frac{a^2 + b^2 - c^2}{4\Delta}}{\frac{c^2 + a^2 - b^2}{4\Delta}}
\]
where \( \Delta \) is the area of the triangle.
Simplifying further, we get:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{2b^2}{a^2 + c^2 - b^2}
\]
Step 4: Final Calculation
Substituting the given values of \( a = 3 \), \( b = 4 \), and \( c = \sqrt{23} \), we get:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{2 \times 4^2}{3^2 + (\sqrt{23})^2 - 4^2}
\]
Simplifying the expression:
\[
= \frac{2 \times 16}{9 + 23 - 16}
\]
\[
= \frac{32}{16} = 2
\]
Final Answer:
The value of \( \frac{\cot A + \cot C}{\cot B} \) is \( 2 \).
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.