Step 1: Given Data
We are given a triangle \( ABC \) with the following sides:
- \( AB = \sqrt{23} \)
- \( BC = 3 \)
- \( CA = 4 \)
We are asked to find the value of \( \frac{\cot A + \cot C}{\cot B} \).
Step 2: Applying the Cotangent Formula
The cotangent of an angle in a triangle can be expressed using the law of cosines and the sides of the triangle. Specifically:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}}
\]
We can rewrite this expression using the formula for cosine in terms of the sides of the triangle:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{b^2 + c^2 - a^2}{2bc} + \frac{a^2 + b^2 - c^2}{2ab}}{\frac{c^2 + a^2 - b^2}{2ac}}
\]
Step 3: Simplifying the Expression
Now, simplifying the above expression, we have:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{b^2 + c^2 - a^2}{4\Delta} + \frac{a^2 + b^2 - c^2}{4\Delta}}{\frac{c^2 + a^2 - b^2}{4\Delta}}
\]
where \( \Delta \) is the area of the triangle.
Simplifying further, we get:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{2b^2}{a^2 + c^2 - b^2}
\]
Step 4: Final Calculation
Substituting the given values of \( a = 3 \), \( b = 4 \), and \( c = \sqrt{23} \), we get:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{2 \times 4^2}{3^2 + (\sqrt{23})^2 - 4^2}
\]
Simplifying the expression:
\[
= \frac{2 \times 16}{9 + 23 - 16}
\]
\[
= \frac{32}{16} = 2
\]
Final Answer:
The value of \( \frac{\cot A + \cot C}{\cot B} \) is \( 2 \).
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?