We have, \(c = \sqrt{23}\), a = 3 and b = 4
Now \(\frac{\cot A + \cot C}{\cot B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}}\)
= \(\frac{\left(\frac{b^2 + c^2 - a^2}{2bc} \sin A + \frac{a^2 + b^2 - c^2}{2ab} \sin C\right)}{\frac{c^2 + a^2 - b^2}{2ac} \sin B}\)
=\(\frac{\frac{b^2 + c^2 - a^2}{4\Delta} + \frac{a^2 + b^2 - c^2}{4\Delta}}{\frac{c^2 + a^2 - b^2}{4\Delta}}\)
= \(\frac{2b^2}{a^2+c^2-b^2}\)
\(= 2\)
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Height of tower AB is 30 m where B is foot of tower. Angle of elevation from a point C on level ground to top of tower is 60° and angle of elevation of A from a point D x m above C is 15° then find the area of quadrilateral ABCD.