Step 1: Given Data
We are given a triangle \( ABC \) with the following sides:
- \( AB = \sqrt{23} \)
- \( BC = 3 \)
- \( CA = 4 \)
We are asked to find the value of \( \frac{\cot A + \cot C}{\cot B} \).
Step 2: Applying the Cotangent Formula
The cotangent of an angle in a triangle can be expressed using the law of cosines and the sides of the triangle. Specifically:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}}
\]
We can rewrite this expression using the formula for cosine in terms of the sides of the triangle:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{b^2 + c^2 - a^2}{2bc} + \frac{a^2 + b^2 - c^2}{2ab}}{\frac{c^2 + a^2 - b^2}{2ac}}
\]
Step 3: Simplifying the Expression
Now, simplifying the above expression, we have:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{\frac{b^2 + c^2 - a^2}{4\Delta} + \frac{a^2 + b^2 - c^2}{4\Delta}}{\frac{c^2 + a^2 - b^2}{4\Delta}}
\]
where \( \Delta \) is the area of the triangle.
Simplifying further, we get:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{2b^2}{a^2 + c^2 - b^2}
\]
Step 4: Final Calculation
Substituting the given values of \( a = 3 \), \( b = 4 \), and \( c = \sqrt{23} \), we get:
\[
\frac{\cot A + \cot C}{\cot B} = \frac{2 \times 4^2}{3^2 + (\sqrt{23})^2 - 4^2}
\]
Simplifying the expression:
\[
= \frac{2 \times 16}{9 + 23 - 16}
\]
\[
= \frac{32}{16} = 2
\]
Final Answer:
The value of \( \frac{\cot A + \cot C}{\cot B} \) is \( 2 \).
Let \(\alpha\ and\ \beta\) be real numbers such that \(-\frac{\pi}{4}<\beta<0<\alpha<\frac{\pi}{4}\). If \(\sin (\alpha+\beta)=\frac{1}{3}\ and\ \cos (\alpha-\beta)=\frac{2}{3}\), then the greatest integer less than or equal to
\(\left(\frac{\sin \alpha}{\cos \beta}+\frac{\cos \beta}{\sin \alpha}+\frac{\cos \alpha}{\sin \beta}+\frac{\sin \beta}{\cos \alpha}\right)^2\) is ____
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.