Question:

In a triangle ABC, if $a, b, c$ are in arithmetic progression and the angle $A$ is twice the angle $C$, then $\cos A : \cos B : \cos C =$

Show Hint

In triangle problems with angles and sides in specific progressions, use the sine rule and trigonometric identities to relate angles, then solve using the arithmetic condition on sides.
Updated On: Jun 5, 2025
  • $2 : 3 : 4$
  • $3 : 4 : 8$
  • $2 : 9 : 12$
  • $1 : 9 : 6$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given $a, b, c$ are in arithmetic progression, $2b = a + c$. Also, $\angle A = 2 \angle C$, and since $A + B + C = 180^\circ$, we have $2C + B + C = 180^\circ$, so $B = 180^\circ - 3C$. Use the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \] Thus, $a = 2R \sin A = 2R \sin 2C$, $b = 2R \sin B = 2R \sin(180^\circ - 3C) = 2R \sin 3C$, $c = 2R \sin C$. The arithmetic progression condition gives: \[ 2 \cdot 2R \sin 3C = 2R \sin 2C + 2R \sin C \implies 2 \sin 3C = \sin 2C + \sin C \] Using $\sin 3C = 3 \sin C - 4 \sin^3 C$ and $\sin 2C = 2 \sin C \cos C$: \[ 2 (3 \sin C - 4 \sin^3 C) = 2 \sin C \cos C + \sin C \] Divide through by $\sin C$ (since $\sin C \neq 0$): \[ 6 - 8 \sin^2 C = 2 \cos C + 1 \implies 6 - 8 (1 - \cos^2 C) = 2 \cos C + 1 \] \[ 8 \cos^2 C - 2 \cos C - 3 = 0 \] Solve the quadratic equation for $\cos C$: \[ \cos C = \frac{2 \pm \sqrt{4 + 96}}{16} = \frac{2 \pm 10}{16} \implies \cos C = \frac{3}{4} \text{ or } \cos C = -\frac{1}{2} \] Since $C$ is an angle in a triangle, $0^\circ<C<90^\circ$, so $\cos C = \frac{3}{4}$. Then: - $\cos A = \cos 2C = 2 \cos^2 C - 1 = 2 \cdot \left(\frac{3}{4}\right)^2 - 1 = 2 \cdot \frac{9}{16} - 1 = \frac{1}{8}$ - $\cos B = \cos(180^\circ - 3C) = -\cos 3C$. Use $\cos 3C = 4 \cos^3 C - 3 \cos C$: \[ \cos 3C = 4 \cdot \left(\frac{3}{4}\right)^3 - 3 \cdot \frac{3}{4} = 4 \cdot \frac{27}{64} - \frac{9}{4} = \frac{27}{16} - \frac{36}{16} = -\frac{9}{16} \] \[ \cos B = -\left(-\frac{9}{16}\right) = \frac{9}{16} \] - $\cos C = \frac{3}{4} = \frac{12}{16}$ The ratio is: \[ \cos A : \cos B : \cos C = \frac{1}{8} : \frac{9}{16} : \frac{12}{16} \] Multiply through by 16: \[ 2 : 9 : 12 \] Option (3) is correct. Options (1), (2), and (4) do not match the computed ratio.
Was this answer helpful?
0
0

Questions Asked in AP EAPCET exam

View More Questions

AP EAPCET Notification