The curl of a vector field \( \vec{v} = P \hat{i} + Q \hat{j} + R \hat{k} \) is given by:
\[
\text{curl}(\vec{v}) = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \hat{i} + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \hat{j} + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \hat{k}
\]
Here, \( P = 3z \), \( Q = 2z \), and \( R = z \). Now, calculating the partial derivatives:
For \( \hat{i} \)-component:
\[
\frac{\partial R}{\partial y} = 0, \quad \frac{\partial Q}{\partial z} = 2 \quad \Rightarrow \quad \text{Component of curl in } \hat{i} = 0 - 2 = -2
\]
For \( \hat{j} \)-component:
\[
\frac{\partial P}{\partial z} = 3, \quad \frac{\partial R}{\partial x} = 0 \quad \Rightarrow \quad \text{Component of curl in } \hat{j} = 3 - 0 = 3
\]
For \( \hat{k} \)-component:
\[
\frac{\partial Q}{\partial x} = 0, \quad \frac{\partial P}{\partial y} = 0 \quad \Rightarrow \quad \text{Component of curl in } \hat{k} = 0 - 0 = 0
\]
Thus,
\[
\text{curl}(\vec{v}) = -2 \hat{i} + 3 \hat{j} + 0 \hat{k}
\]
Therefore, \( a = -2 \), \( b = 3 \), and \( c = 0 \), and
\[
a + b + c = -2 + 3 + 0 = 1
\]
Final Answer: 1