Given data:
- Wavelength of light, \( \lambda = 550 \, \text{nm} = 550 \times 10^{-9} \, \text{m} \)
- Distance to the screen, \( D = 100 \, \text{cm} = 1 \, \text{m} \)
- Width of the slit, \( d = 0.2 \, \text{mm} = 0.2 \times 10^{-3} \, \text{m} \)
The distance \( y \) to the first order minima in a single-slit diffraction pattern is given by:
\[ y = \frac{\lambda D}{d}. \]
Substitution
Substituting the given values:
\[ y = \frac{550 \times 10^{-9} \times 1}{0.2 \times 10^{-3}}. \]
Calculation
Simplifying:
\[ y = \frac{550 \times 10^{-9} \times 10^2}{0.2 \times 10^{-3}} = \frac{550 \times 10^{-7}}{0.2 \times 10^{-3}}. \]
Further simplification:
\[ y = \frac{550 \times 10^{-5}}{0.2} = 275 \times 10^{-5} \, \text{m}. \]
Therefore, the value of \( x \) is 275.
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: