Given data:
- Wavelength of light, \( \lambda = 550 \, \text{nm} = 550 \times 10^{-9} \, \text{m} \)
- Distance to the screen, \( D = 100 \, \text{cm} = 1 \, \text{m} \)
- Width of the slit, \( d = 0.2 \, \text{mm} = 0.2 \times 10^{-3} \, \text{m} \)
The distance \( y \) to the first order minima in a single-slit diffraction pattern is given by:
\[ y = \frac{\lambda D}{d}. \]
Substitution
Substituting the given values:
\[ y = \frac{550 \times 10^{-9} \times 1}{0.2 \times 10^{-3}}. \]
Calculation
Simplifying:
\[ y = \frac{550 \times 10^{-9} \times 10^2}{0.2 \times 10^{-3}} = \frac{550 \times 10^{-7}}{0.2 \times 10^{-3}}. \]
Further simplification:
\[ y = \frac{550 \times 10^{-5}}{0.2} = 275 \times 10^{-5} \, \text{m}. \]
Therefore, the value of \( x \) is 275.
Calculate the angle of minimum deviation of an equilateral prism. The refractive index of the prism is \(\sqrt{3}\). Calculate the angle of incidence for this case of minimum deviation also.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $