Given data:
- Wavelength of light, \( \lambda = 550 \, \text{nm} = 550 \times 10^{-9} \, \text{m} \)
- Distance to the screen, \( D = 100 \, \text{cm} = 1 \, \text{m} \)
- Width of the slit, \( d = 0.2 \, \text{mm} = 0.2 \times 10^{-3} \, \text{m} \)
The distance \( y \) to the first order minima in a single-slit diffraction pattern is given by:
\[ y = \frac{\lambda D}{d}. \]
Substitution
Substituting the given values:
\[ y = \frac{550 \times 10^{-9} \times 1}{0.2 \times 10^{-3}}. \]
Calculation
Simplifying:
\[ y = \frac{550 \times 10^{-9} \times 10^2}{0.2 \times 10^{-3}} = \frac{550 \times 10^{-7}}{0.2 \times 10^{-3}}. \]
Further simplification:
\[ y = \frac{550 \times 10^{-5}}{0.2} = 275 \times 10^{-5} \, \text{m}. \]
Therefore, the value of \( x \) is 275.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
