Consider a system of three connected strings, $ S_1, S_2 $ and $ S_3 $ with uniform linear mass densities $ \mu \, \text{kg/m}, 4\mu \, \text{kg/m} $ and $ 16\mu \, \text{kg/m} $, respectively, as shown in the figure. $ S_1 $ and $ S_2 $ are connected at point $ P $, whereas $ S_2 $ and $ S_3 $ are connected at the point $ Q $, and the other end of $ S_3 $ is connected to a wall. A wave generator $ O $ is connected to the free end of $ S_1 $. The wave from the generator is represented by $ y = y_0 \cos(\omega t - kx) $ cm, where $ y_0, \omega $ and $ k $ are constants of appropriate dimensions. Which of the following statements is/are correct:
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to: