\( \text{Given: } [A]_0 = 8[B]_0 \)
\( t_{1/2(A)} = 10 \text{ min} \)
\( t_{1/2(B)} = 40 \text{ min} \)
\( 1^{st} \text{ order kinetics} \)
\( t = ? \) \( [A] = [B] \) \( -k_A \times t = \ln \frac{[A]}{[A]_0} \)
\( [A] = [A]_0 e^{-k_A t} \) \( [B] = [B]_0 e^{-k_B t} \) \( [A] = [B] \)
\( [A]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8[B]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8 = e^{(k_A - k_B)t} \) \( \ln 8 = (k_A - k_B)t \) \( t = \frac{\ln 8}{k_A - k_B} \)
\( t = \frac{\ln 8}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{\ln 2^3}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{3 \ln 2}{\ln 2 \left( \frac{1}{10} - \frac{1}{40} \right)} \)
\( t = \frac{3}{\frac{4-1}{40}} = \frac{3}{\frac{3}{40}} \)
\( t = 40 \text{ min} \)
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
