\( \text{Given: } [A]_0 = 8[B]_0 \)
\( t_{1/2(A)} = 10 \text{ min} \)
\( t_{1/2(B)} = 40 \text{ min} \)
\( 1^{st} \text{ order kinetics} \)
\( t = ? \) \( [A] = [B] \) \( -k_A \times t = \ln \frac{[A]}{[A]_0} \)
\( [A] = [A]_0 e^{-k_A t} \) \( [B] = [B]_0 e^{-k_B t} \) \( [A] = [B] \)
\( [A]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8[B]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8 = e^{(k_A - k_B)t} \) \( \ln 8 = (k_A - k_B)t \) \( t = \frac{\ln 8}{k_A - k_B} \)
\( t = \frac{\ln 8}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{\ln 2^3}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{3 \ln 2}{\ln 2 \left( \frac{1}{10} - \frac{1}{40} \right)} \)
\( t = \frac{3}{\frac{4-1}{40}} = \frac{3}{\frac{3}{40}} \)
\( t = 40 \text{ min} \)
The rate of a reaction:
A + B −→ product
is given below as a function of different initial concentrations of A and B.
Experiment | \([A]\) (mol L\(^{-1}\)) | \([B]\) (mol L\(^{-1}\)) | Initial Rate (mol L\(^{-1}\) min\(^{-1}\)) |
---|---|---|---|
1 | 0.01 | 0.01 | \(5 \times 10^{-3}\) |
2 | 0.02 | 0.01 | \(1 \times 10^{-2}\) |
3 | 0.01 | 0.02 | \(5 \times 10^{-3}\) |
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: