\( \text{Given: } [A]_0 = 8[B]_0 \)
\( t_{1/2(A)} = 10 \text{ min} \)
\( t_{1/2(B)} = 40 \text{ min} \)
\( 1^{st} \text{ order kinetics} \)
\( t = ? \) \( [A] = [B] \) \( -k_A \times t = \ln \frac{[A]}{[A]_0} \)
\( [A] = [A]_0 e^{-k_A t} \) \( [B] = [B]_0 e^{-k_B t} \) \( [A] = [B] \)
\( [A]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8[B]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8 = e^{(k_A - k_B)t} \) \( \ln 8 = (k_A - k_B)t \) \( t = \frac{\ln 8}{k_A - k_B} \)
\( t = \frac{\ln 8}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{\ln 2^3}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{3 \ln 2}{\ln 2 \left( \frac{1}{10} - \frac{1}{40} \right)} \)
\( t = \frac{3}{\frac{4-1}{40}} = \frac{3}{\frac{3}{40}} \)
\( t = 40 \text{ min} \)
The decomposition of a compound A follows first-order kinetics. The concentration of A at time t = 0 is 1.0 mol L-1. After 60 minutes, it reduces to 0.25 mol L-1. What is the initial rate of the reaction at t = 0? (Take ln 2 = 0.693)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: