\( \text{Given: } [A]_0 = 8[B]_0 \)
\( t_{1/2(A)} = 10 \text{ min} \)
\( t_{1/2(B)} = 40 \text{ min} \)
\( 1^{st} \text{ order kinetics} \)
\( t = ? \) \( [A] = [B] \) \( -k_A \times t = \ln \frac{[A]}{[A]_0} \)
\( [A] = [A]_0 e^{-k_A t} \) \( [B] = [B]_0 e^{-k_B t} \) \( [A] = [B] \)
\( [A]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8[B]_0 e^{-k_A t} = [B]_0 e^{-k_B t} \)
\( 8 = e^{(k_A - k_B)t} \) \( \ln 8 = (k_A - k_B)t \) \( t = \frac{\ln 8}{k_A - k_B} \)
\( t = \frac{\ln 8}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{\ln 2^3}{\frac{\ln 2}{10} - \frac{\ln 2}{40}} \)
\( t = \frac{3 \ln 2}{\ln 2 \left( \frac{1}{10} - \frac{1}{40} \right)} \)
\( t = \frac{3}{\frac{4-1}{40}} = \frac{3}{\frac{3}{40}} \)
\( t = 40 \text{ min} \)
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: