The average energy density of the electric field is given by:
\[ U_E = \frac{1}{2} \epsilon_0 E^2 \]
Substituting the given values:
\[ U_E = \frac{1}{2} \times 8.85 \times 10^{-12} \times (50)^2 \]
Calculating:
\[ U_E = 1.106 \times 10^{-8} \, \text{Jm}^{-3} \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32