The average energy density of the electric field is given by:
\[ U_E = \frac{1}{2} \epsilon_0 E^2 \]
Substituting the given values:
\[ U_E = \frac{1}{2} \times 8.85 \times 10^{-12} \times (50)^2 \]
Calculating:
\[ U_E = 1.106 \times 10^{-8} \, \text{Jm}^{-3} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: