The average energy density of the electric field is given by:
\[ U_E = \frac{1}{2} \epsilon_0 E^2 \]
Substituting the given values:
\[ U_E = \frac{1}{2} \times 8.85 \times 10^{-12} \times (50)^2 \]
Calculating:
\[ U_E = 1.106 \times 10^{-8} \, \text{Jm}^{-3} \]
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: