The average energy density of the electric field is given by:
\[ U_E = \frac{1}{2} \epsilon_0 E^2 \]
Substituting the given values:
\[ U_E = \frac{1}{2} \times 8.85 \times 10^{-12} \times (50)^2 \]
Calculating:
\[ U_E = 1.106 \times 10^{-8} \, \text{Jm}^{-3} \]
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to:
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to: