Modulus of Elasticity (Young's Modulus) = \( \frac{\text{Stress}}{\text{Strain}} \)
Strain is dimensionless, so the dimension of Modulus of Elasticity = Dimension of Stress.
Stress = \( \frac{\text{Force}}{\text{Area}} = \frac{[M^1 L^1 T^{-2}]}{[L^2]} = [M^1 L^{-1} T^{-2}] \)
Torque = \( \text{Force} \times \text{Distance} \)
\( [M^1 L^1 T^{-2}] \times [L] = [M^1 L^2 T^{-2}] \)
The measured quantity is Modulus of Elasticity per unit Torque.
\[
\text{Dimension} = \frac{[M^1 L^{-1} T^{-2}]}{[M^1 L^2 T^{-2}]} = [M^{1 - 1} L^{-1 - 2} T^{-2 + 2}]
\]
\[
= [M^{0} L^{-3} T^{0}] = [L^{-3}]
\]
Comparing the dimensions: \[ [M^0 L^{-3} T^0] = [M^a L^b T^c] \] \[ a = 0, \, b = -3, \, c = 0 \]
Since we need to compare it with \( b = 3 \), we take the magnitude of the value \( b = -3 \).
Therefore, the value of \( c \) is:
\[
\boldsymbol{0}
\]
Match List-I with List-II.
Choose the correct answer from the options given below :
The expression given below shows the variation of velocity \( v \) with time \( t \): \[ v = \frac{At^2 + Bt}{C + t} \] The dimension of \( A \), \( B \), and \( C \) is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: