Modulus of Elasticity (Young's Modulus) = \( \frac{\text{Stress}}{\text{Strain}} \)
Strain is dimensionless, so the dimension of Modulus of Elasticity = Dimension of Stress.
Stress = \( \frac{\text{Force}}{\text{Area}} = \frac{[M^1 L^1 T^{-2}]}{[L^2]} = [M^1 L^{-1} T^{-2}] \)
Torque = \( \text{Force} \times \text{Distance} \)
\( [M^1 L^1 T^{-2}] \times [L] = [M^1 L^2 T^{-2}] \)
The measured quantity is Modulus of Elasticity per unit Torque.
\[
\text{Dimension} = \frac{[M^1 L^{-1} T^{-2}]}{[M^1 L^2 T^{-2}]} = [M^{1 - 1} L^{-1 - 2} T^{-2 + 2}]
\]
\[
= [M^{0} L^{-3} T^{0}] = [L^{-3}]
\]
Comparing the dimensions: \[ [M^0 L^{-3} T^0] = [M^a L^b T^c] \] \[ a = 0, \, b = -3, \, c = 0 \]
Since we need to compare it with \( b = 3 \), we take the magnitude of the value \( b = -3 \).
Therefore, the value of \( c \) is:
\[
\boldsymbol{0}
\]
Match List-I with List-II.
Choose the correct answer from the options given below :
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of:
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .