In a geometric progression, the \(n\)-th term is given by:
\[
T_n = a \times r^{n-1}
\]
We are given:
- \(T_3 = 24\), so \(a \times r^2 = 24\)
- \(T_6 = 192\), so \(a \times r^5 = 192\)
Dividing the second equation by the first:
\[
\frac{a \times r^5}{a \times r^2} = \frac{192}{24} \quad \Rightarrow \quad r^3 = 8
\]
Thus, \(r = 2\). Substituting \(r = 2\) into \(a \times r^2 = 24\):
\[
a \times 4 = 24 \quad \Rightarrow \quad a = 6
\]
Now, using \(T_{10} = a \times r^9\):
\[
T_{10} = 6 \times 2^9 = 6 \times 512 = 3072
\]
Thus, the correct answer is option (2).