We are given the following values:
- Length of the tube \( L = 30 \, \text{m} \),
- Diameter of the tube \( D = 2 \, \text{cm} = 0.02 \, \text{m} \),
- Temperature difference \( \Delta T = 60 - 57 = 3 \, \text{°C} \),
- Heat loss \( Q = 381.15 \, \text{W} \),
- Specific heat capacity \( c_p = 3.85 \, \text{kJ/kg K} = 3850 \, \text{J/kg K} \),
- Density \( \rho = 1020 \, \text{kg/m}^3 \),
- Viscosity \( \mu = 1.20 \, \text{cP} = 1.20 \times 10^{-3} \, \text{Pa.s} \).
The heat transfer equation for the tube is given by:
\[
Q = \frac{\pi D L \rho c_p \Delta T}{4}
\]
Rearranging to solve for the mass flow rate \( \dot{m} \):
\[
\dot{m} = \frac{4Q}{\pi D L \rho c_p \Delta T}
\]
Substituting the values:
\[
\dot{m} = \frac{4 \times 381.15}{\pi \times 0.02 \times 30 \times 1020 \times 3850 \times 3}
\]
\[
\dot{m} = 0.022 \, \text{kg/s}.
\]
Now, we can calculate the Reynolds number (\( Re \)) using the formula:
\[
Re = \frac{\rho v D}{\mu}
\]
To find \( v \) (the velocity of the flow), we use the mass flow rate and the density:
\[
v = \frac{\dot{m}}{\rho A} = \frac{0.022}{1020 \times \pi \left(\frac{0.02}{2}\right)^2}
\]
\[
v = 0.173 \, \text{m/s}.
\]
Finally, substituting the values in the Reynolds number equation:
\[
Re = \frac{1020 \times 0.173 \times 0.02}{1.20 \times 10^{-3}} = 1747.5.
\]
Thus, the Reynolds number is approximately \( 1750 \).