In a binomial distribution:
- Mean \( \mu = np \)
- Variance \( \sigma^2 = npq \)
Given:
\[
np = 4,\quad npq = 3
\]
Divide the equations:
\[
\frac{npq}{np} = \frac{3}{4} \Rightarrow q = \frac{3}{4} \Rightarrow p = \frac{1}{4}
\Rightarrow np = 4 \Rightarrow n = \frac{4}{1/4} = 16
\]
So:
\[
n = 16,\quad p = \frac{1}{4},\quad q = \frac{3}{4}
\]
We are asked to find:
\[
2^{32} \cdot P(X = \frac{n}{2}) = 2^{32} \cdot P(X = 8)
\]
Binomial probability:
\[
P(X = r) = ^nC_r \cdot p^r \cdot q^{n - r}
= ^{16}C_8 \cdot \left(\frac{1}{4}\right)^8 \cdot \left(\frac{3}{4}\right)^8
= ^{16}C_8 \cdot \left( \frac{1 \cdot 3}{4^2} \right)^8 = ^{16}C_8 \cdot \left(\frac{3}{16}\right)^8
\]
Now:
\[
2^{32} = (4^2)^8 = 16^8
\Rightarrow 2^{32} \cdot P(X = 8) = ^{16}C_8 \cdot \left(\frac{3}{16}\right)^8 \cdot 16^8 = ^{16}C_8 \cdot 3^8
\]
\[
\Rightarrow \boxed{^{16}C_8 \cdot 3^8}
\]