Question:

If $z = \frac{\sqrt{3}{2} + \frac{i}{2}$, then $(z^{201} - i)^8$ is equal to}

Show Hint

Powers of $i$: $i^1=i, i^2=-1, i^3=-i, i^4=1$.
Updated On: Feb 5, 2026
  • 0
  • 256
  • $-1$
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$z = \cos 30^\circ + i \sin 30^\circ = e^{i\pi/6}$.
$z^{201} = e^{i 201\pi/6} = e^{i 67\pi/2}$.
$67\pi/2 = 32\pi + 3\pi/2$.
$z^{201} = \cos(3\pi/2) + i \sin(3\pi/2) = -i$.
$(z^{201} - i)^8 = (-i - i)^8 = (-2i)^8$.
$= (-2)^8 i^8 = 256 \times 1 = 256$.
Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions