The given differential equation is:
\[
\frac{dy}{dx} + \frac{4x}{x^2 - 1} y = \frac{x + 2}{(x^2 - 1)^{5/2}}
\]
We first calculate the integrating factor (I.F.):
\[
\text{I.F.} = e^{\int \frac{4x}{x^2 - 1} dx}
\]
Using substitution, we get:
\[
\int \frac{4x}{x^2 - 1} dx = 2 \ln(x^2 - 1)
\]
Thus, the integrating factor is:
\[
e^{\int \frac{4x}{x^2 - 1} dx} = e^{2 \ln(x^2 - 1)} = (x^2 - 1)^2
\]
Step 1: Solve the equation using the integrating factor.
Now, the equation becomes:
\[
(x^2 - 1)^2 \frac{dy}{dx} + (x^2 - 1)^2 \frac{4x}{x^2 - 1} y = (x^2 - 1)^2 \frac{x + 2}{(x^2 - 1)^{5/2}}
\]
This simplifies to:
\[
\frac{d}{dx} \left[ y (x^2 - 1)^2 \right] = (x + 2)(x^2 - 1)^{1/2}
\]
Now integrate both sides:
\[
y(x^2 - 1)^2 = \int (x + 2)(x^2 - 1)^{1/2} dx
\]
Performing the integration, we get:
\[
y(x^2 - 1)^2 = \int x (x^2 - 1)^{1/2} dx + 2 \int (x^2 - 1)^{1/2} dx
\]
The results are:
\[
\int x (x^2 - 1)^{1/2} dx = \frac{1}{2} (x^2 - 1)^{3/2}, \quad \int (x^2 - 1)^{1/2} dx = \frac{1}{2} x (x^2 - 1)^{1/2}
\]
Thus, the solution becomes:
\[
y(x^2 - 1)^2 = \frac{1}{2} (x^2 - 1)^{3/2} + x (x^2 - 1)^{1/2} + C
\]
Step 2: Apply the initial condition.
Substitute \( x = 2 \) and \( y(2) = \frac{2}{9} \log_e \left( 2 + \sqrt{3} \right) \):
\[
\frac{2}{9} \log_e \left( 2 + \sqrt{3} \right) (2^2 - 1)^2 = \frac{1}{2} (2^2 - 1)^{3/2} + 2 (2^2 - 1)^{1/2} + C
\]
Simplifying:
\[
\frac{2}{9} \log_e \left( 2 + \sqrt{3} \right) \cdot 9 = \sqrt{3} + 2\sqrt{3} + C
\]
Thus:
\[
C = -\sqrt{3}
\]
Step 3: Find the value of \( \alpha \beta \gamma \).
Substitute \( x = \sqrt{2} \) into the equation for \( y \):
\[
y(\sqrt{2}) = 1 + 2 \ln \left( \sqrt{2 + 1} \right) - \sqrt{3}
\]
We find:
\[
\alpha = 2, \, \beta = 1, \, \gamma = 3
\]
Thus, \( \alpha \beta \gamma = 2 \times 1 \times 3 = 6 \).