Given the expression:
\[ y = x^{\sin(x)} + (\sin(x))^x \]
We differentiate the expression with respect to \(x\) using the sum rule, which allows us to differentiate each term separately.
For the first term, \(x^{\sin(x)}\), the derivative is:
\[ \frac{d}{dx}(x^{\sin(x)}) = (\sin(x)) \cdot (x^{\sin(x)-1}) + (x^{\sin(x)}) \cdot (\ln(x)) \cdot \cos(x) \]
For the second term, \((\sin(x))^x\), the derivative is:
\[ \frac{d}{dx}((\sin(x))^x) = (\sin(x))^x \cdot \ln(\sin(x)) \cdot \cos(x) + (\sin(x))^{x-1} \cdot x \cdot \cos(x) \]
Now, we can find \(\frac{dy}{dx}\) by adding the derivatives of both terms:
\[ \frac{dy}{dx} = (\sin(x)) \cdot (x^{\sin(x)-1}) + (x^{\sin(x)}) \cdot (\ln(x)) \cdot \cos(x) + (\sin(x))^x \cdot \ln(\sin(x)) \cdot \cos(x) + (\sin(x))^{x-1} \cdot x \cdot \cos(x) \]
To evaluate \(\left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}}\), we substitute \(x = \frac{\pi}{2}\) into the equation:
\[ \left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}} = (\sin(\frac{\pi}{2})) \cdot \left( \left(\frac{\pi}{2}\right)^{\sin(\frac{\pi}{2})-1} \right) + \left( \left(\frac{\pi}{2}\right)^1 \right) \cdot \left( \ln\left(\frac{\pi}{2}\right) \right) \cdot \cos(\frac{\pi}{2}) + (\sin(\frac{\pi}{2}))^{\frac{\pi}{2}} \cdot \ln(\sin(\frac{\pi}{2})) \cdot \cos(\frac{\pi}{2}) \]
Simplifying the trigonometric functions and evaluating the values:
\[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = (1) \cdot \left( \left(\frac{\pi}{2}\right)^{1-1} \right) + \left( \left(\frac{\pi}{2}\right)^1 \right) \cdot \left( \ln\left(\frac{\pi}{2}\right) \right) \cdot (0) + (1)^{\frac{\pi}{2}} \cdot \ln(1) \cdot (0) + (1)^{\frac{\pi}{2}-1} \cdot \left( \frac{\pi}{2} \right) \cdot (0) \]
Substituting the values gives:
\[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = (1) \cdot (1) + (1) \cdot \left( \ln\left(\frac{\pi}{2}\right) \right) \cdot (0) + (1) \cdot (0) + (1) \cdot \left( \frac{\pi}{2} \right) \cdot (0) \]
After simplifying:
\[ \frac{dy}{dx} \bigg|_{x = \frac{\pi}{2}} = 1 + 0 + 0 + 0 \]
Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) is 1, which corresponds to option (B) 1.
We are given: \[ y = x^{\sin x} + (\sin x)^x \] Let us differentiate both terms:
1. Derivative of \(x^{\sin x}\): Use logarithmic differentiation: \[ \frac{d}{dx} (x^{\sin x}) = x^{\sin x} \left( \frac{\sin x}{x} + \cos x \log x \right) \]
2. Derivative of \((\sin x)^x\): Again, use logarithmic differentiation: \[ \frac{d}{dx} \left( (\sin x)^x \right) = (\sin x)^x \left( \log (\sin x) + x \cdot \cot x \right) \] Now evaluate at \(x = \frac{\pi}{2}\): - \(\sin\left(\frac{\pi}{2}\right) = 1\) - \(\cos\left(\frac{\pi}{2}\right) = 0\) - \(\log(1) = 0\) - \(\cot\left(\frac{\pi}{2}\right) = 0\) So, \[ x^{\sin x} = \left(\frac{\pi}{2}\right)^1 = \frac{\pi}{2} \] \[ \Rightarrow \frac{d}{dx}(x^{\sin x}) = \frac{\pi}{2} \cdot \left( \frac{1}{\frac{\pi}{2}} + 0 \right) = \frac{\pi}{2} \cdot \frac{2}{\pi} = 1 \] \[ (\sin x)^x = 1^x = 1 \] \[ \Rightarrow \frac{d}{dx}((\sin x)^x) = 1 \cdot (0 + x \cdot 0) = 0 \]
Final answer: \[ \left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}} = 1 + 0 = \mathbf{1} \]
Let \(y = x^{\sin(x)} + (\sin(x))^x\). We want to find \(\left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}}\).
Let \(u = x^{\sin(x)}\) and \(v = (\sin(x))^x\). Then \(y = u + v\), so \(\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}\).
First, let's find \(\frac{du}{dx}\):
Since \(u = x^{\sin(x)}\), take the natural logarithm of both sides:
\(\ln(u) = \sin(x) \ln(x)\)
Differentiate both sides with respect to x:
\(\frac{1}{u} \frac{du}{dx} = \cos(x) \ln(x) + \sin(x) \cdot \frac{1}{x}\)
\(\frac{du}{dx} = u \left[ \cos(x) \ln(x) + \frac{\sin(x)}{x} \right]\)
\(\frac{du}{dx} = x^{\sin(x)} \left[ \cos(x) \ln(x) + \frac{\sin(x)}{x} \right]\)
Next, let's find \(\frac{dv}{dx}\):
Since \(v = (\sin(x))^x\), take the natural logarithm of both sides:
\(\ln(v) = x \ln(\sin(x))\)
Differentiate both sides with respect to x:
\(\frac{1}{v} \frac{dv}{dx} = \ln(\sin(x)) + x \cdot \frac{\cos(x)}{\sin(x)}\)
\(\frac{dv}{dx} = v \left[ \ln(\sin(x)) + x \cot(x) \right]\)
\(\frac{dv}{dx} = (\sin(x))^x \left[ \ln(\sin(x)) + x \cot(x) \right]\)
Now, evaluate \(\frac{du}{dx}\) and \(\frac{dv}{dx}\) at \(x = \frac{\pi}{2}\):
\(\frac{du}{dx} \Big|_{x = \frac{\pi}{2}} = \left(\frac{\pi}{2}\right)^{\sin(\frac{\pi}{2})} \left[ \cos(\frac{\pi}{2}) \ln\left(\frac{\pi}{2}\right) + \frac{\sin(\frac{\pi}{2})}{\frac{\pi}{2}} \right] = \left(\frac{\pi}{2}\right)^1 \left[ 0 \cdot \ln\left(\frac{\pi}{2}\right) + \frac{1}{\frac{\pi}{2}} \right] = \frac{\pi}{2} \cdot \frac{2}{\pi} = 1\)
\(\frac{dv}{dx} \Big|_{x = \frac{\pi}{2}} = \left(\sin\left(\frac{\pi}{2}\right)\right)^{\frac{\pi}{2}} \left[ \ln\left(\sin\left(\frac{\pi}{2}\right)\right) + \frac{\pi}{2} \cot\left(\frac{\pi}{2}\right) \right] = (1)^{\frac{\pi}{2}} \left[ \ln(1) + \frac{\pi}{2} \cdot 0 \right] = 1 \cdot [0 + 0] = 0\)
Finally, \(\frac{dy}{dx} \Big|_{x = \frac{\pi}{2}} = \frac{du}{dx} \Big|_{x = \frac{\pi}{2}} + \frac{dv}{dx} \Big|_{x = \frac{\pi}{2}} = 1 + 0 = 1\)
Therefore, \(\left. \frac{dy}{dx} \right|_{x = \frac{\pi}{2}} = 1\)
Answer: 1
The graph shown below depicts:
A wooden block of mass M lies on a rough floor. Another wooden block of the same mass is hanging from the point O through strings as shown in the figure. To achieve equilibrium, the coefficient of static friction between the block on the floor and the floor itself is
In an experiment to determine the figure of merit of a galvanometer by half deflection method, a student constructed the following circuit. He applied a resistance of \( 520 \, \Omega \) in \( R \). When \( K_1 \) is closed and \( K_2 \) is open, the deflection observed in the galvanometer is 20 div. When \( K_1 \) is also closed and a resistance of \( 90 \, \Omega \) is removed in \( S \), the deflection becomes 13 div. The resistance of galvanometer is nearly: