We are given the equation:
\[
y + x e^y = \sin x + \tan x
\]
We need to find \( \frac{dy}{dx} \) at \( x = 0 \).
Step 1: Differentiate both sides implicitly with respect to \( x \).
On the left-hand side:
- \( \frac{d}{dx}(y) = \frac{dy}{dx} \)
- Apply the product rule to \( x e^y \):
\[
\frac{d}{dx}(x e^y) = e^y + x e^y \frac{dy}{dx}
\]
Thus, differentiating the left-hand side:
\[
\frac{d}{dx}\left( y + x e^y \right) = \frac{dy}{dx} + e^y + x e^y \frac{dy}{dx}
\]
On the right-hand side:
- \( \frac{d}{dx}(\sin x) = \cos x \)
- \( \frac{d}{dx}(\tan x) = \sec^2 x \)
Thus, differentiating the right-hand side:
\[
\frac{d}{dx}\left( \sin x + \tan x \right) = \cos x + \sec^2 x
\]
Step 2: Substitute the derivatives.
Now we equate both sides:
\[
\frac{dy}{dx} + e^y + x e^y \frac{dy}{dx} = \cos x + \sec^2 x
\]
Step 3: Evaluate at \( x = 0 \).
At \( x = 0 \), we know:
- \( \sin(0) = 0 \), \( \tan(0) = 0 \)
- \( \cos(0) = 1 \), \( \sec^2(0) = 1 \)
- Also, from the original equation \( y + x e^y = \sin x + \tan x \), at \( x = 0 \), we get:
\[
y + 0 \cdot e^y = 0 \quad \Rightarrow \quad y = 0
\]
Substitute \( y = 0 \) and \( x = 0 \) into the derivative equation:
\[
\frac{dy}{dx} + e^0 + 0 \cdot e^0 \cdot \frac{dy}{dx} = 1 + 1
\]
\[
\frac{dy}{dx} + 1 = 2
\]
Thus, solving for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = 2 - 1 = 1
\]
Final Answer:
\[
\boxed{1}
\]