Step 1: Find the first and second derivatives of \( y(x) \).
We are given the function \( y(x) = 2e^{2x} + e^{\beta x} \). First, calculate the first derivative: \[ \frac{dy}{dx} = 4e^{2x} + \beta e^{\beta x}. \] Next, calculate the second derivative: \[ \frac{d^2 y}{dx^2} = 8e^{2x} + \beta^2 e^{\beta x}. \]
Step 2: Substitute into the differential equation.
Substitute \( \frac{dy}{dx} \), \( \frac{d^2 y}{dx^2} \), and \( y(x) \) into the given differential equation: \[ (8e^{2x} + \beta^2 e^{\beta x}) + (4e^{2x} + \beta e^{\beta x}) - 6(2e^{2x} + e^{\beta x}) = 0. \] Simplify this to check if the equation holds.
Step 3: Use the initial condition to find \( y(0) \).
We are given \( \frac{dy}{dx} (0) = 5 \). Substitute \( x = 0 \) into \( \frac{dy}{dx} = 4e^{2x} + \beta e^{\beta x} \): \[ \frac{dy}{dx} (0) = 4 + \beta = 5 \implies \beta = 1. \] Now substitute \( \beta = 1 \) into \( y(x) = 2e^{2x} + e^{\beta x} \) to find \( y(0) \): \[ y(0) = 2e^{0} + e^{0} = 2 + 1 = 3. \]
Step 4: Conclusion.
After correcting the previous oversight, the correct answer is (B) 4.
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.