If \( y = \tan(\log x) \), then \( \frac{d^2y}{dx^2} \) is given by:
Step 1: First derivative
Given: \[ y = \tan(\log x) \] Use the chain rule: \[ \frac{dy}{dx} = \sec^2(\log x) \cdot \frac{d}{dx}(\log x) = \sec^2(\log x) \cdot \frac{1}{x} \] So: \[ \frac{dy}{dx} = \frac{\sec^2(\log x)}{x} \]
Step 2: Second derivative
Use the product and chain rules: \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{\sec^2(\log x)}{x} \right) \] Let’s differentiate:
Let \( u = \sec^2(\log x) \), \( v = x \), then: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} \] Now: \[ \frac{du}{dx} = \frac{d}{dx} \sec^2(\log x) = 2 \sec(\log x) \cdot \sec(\log x) \tan(\log x) \cdot \frac{1}{x} = \frac{2 \sec^2(\log x) \tan(\log x)}{x} \] So: \[ \frac{d^2y}{dx^2} = \frac{x \cdot \frac{2 \sec^2(\log x) \tan(\log x)}{x} - \sec^2(\log x)}{x^2} \] Simplify: \[ \frac{d^2y}{dx^2} = \frac{2 \sec^2(\log x) \tan(\log x) - \sec^2(\log x)}{x^2} = \frac{\sec^2(\log x)[2 \tan(\log x) - 1]}{x^2} \]
\( \boxed{ \frac{ \sec^2(\log x)[2 \tan(\log x) - 1] }{x^2} } \)