Step 1: Differentiate \( y = \tan(\log x) \)
We are given:
\[
y = \tan(\log x).
\]
Differentiating both sides with respect to \( x \):
\[
\frac{dy}{dx} = \sec^2(\log x) \cdot \frac{d}{dx} (\log x).
\]
Since \( \frac{d}{dx} (\log x) = \frac{1}{x} \), we obtain:
\[
\frac{dy}{dx} = \frac{\sec^2(\log x)}{x}.
\]
Step 2: Differentiate Again to Find \( \frac{d^2y}{dx^2} \)
Differentiating \( \frac{dy}{dx} = \frac{\sec^2(\log x)}{x} \) using the quotient rule:
\[
\frac{d^2y}{dx^2} = \frac{x \cdot \frac{d}{dx} [\sec^2(\log x)] - \sec^2(\log x) \cdot \frac{d}{dx} [x]}{x^2}.
\]
Using the chain rule:
\[
\frac{d}{dx} [\sec^2(\log x)] = 2\sec^2(\log x) \tan(\log x) \cdot \frac{1}{x}.
\]
Thus, we get:
\[
\frac{d^2y}{dx^2} = \frac{x \cdot \left(2\sec^2(\log x) \tan(\log x) \cdot \frac{1}{x} \right) - \sec^2(\log x)}{x^2}.
\]
Simplifying:
\[
\frac{d^2y}{dx^2} = \frac{2\sec^2(\log x) \tan(\log x) - \sec^2(\log x)}{x^2}.
\]
Factoring out \( \sec^2(\log x) \):
\[
\frac{d^2y}{dx^2} = \frac{\sec^2(\log x) [2\tan(\log x) - 1]}{x^2}.
\]
Final Answer: \( \boxed{\frac{\sec^2(\log x) [2\tan(\log x) - 1]}{x^2}} \).