Step 1: Simplify the given expression.
We start by simplifying the given expression inside the inverse tangent function.
Using the identity \( \frac{1 + \cos \theta}{1 - \cos \theta} = \tan^2 \left( \frac{\theta}{2} \right) \), we rewrite the expression inside the tangent inverse:
\[
\frac{\sqrt{1 + \cos \frac{x}{2}}}{\sqrt{1 - \cos \frac{x}{2}}} = \tan \left( \frac{x}{4} \right)
\]
Step 2: Take the derivative.
Now we differentiate \( y = \tan^{-1} \left( \tan \frac{x}{4} \right) \). We know that the derivative of \( \tan^{-1} (z) \) is \( \frac{1}{1+z^2} \), so
\[
\frac{dy}{dx} = \frac{1}{1 + \left( \tan \frac{x}{4} \right)^2} \cdot \frac{d}{dx} \left( \frac{x}{4} \right)
\]
Step 3: Simplify the result.
\[
\frac{dy}{dx} = \frac{1}{1 + \tan^2 \frac{x}{4}} \cdot \frac{1}{4}
\]
Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we get
\[
\frac{dy}{dx} = \frac{1}{4 \sec^2 \frac{x}{4}} = \frac{1}{4}
\]
Step 4: Conclusion.
The required derivative is \( \frac{dy}{dx} = -\frac{1}{4} \).