Step 1: Differentiate implicitly with respect to \( x \).
\[
\frac{d}{dx}\left(y\sqrt{1-x^2}\right)
+
\frac{d}{dx}\left(x\sqrt{1-y^2}\right)
= 0
\]
Step 2: Apply product rule.
\[
\sqrt{1-x^2}\frac{dy}{dx}
-
\frac{xy}{\sqrt{1-x^2}}
+
\sqrt{1-y^2}
-
\frac{x y}{\sqrt{1-y^2}}\frac{dy}{dx}
= 0
\]
Step 3: Collect \( \dfrac{dy}{dx} \) terms.
\[
\left(\sqrt{1-x^2} - \frac{x y}{\sqrt{1-y^2}}\right)\frac{dy}{dx}
=
\frac{x y}{\sqrt{1-x^2}} - \sqrt{1-y^2}
\]
Step 4: Simplify using the given equation.
\[
\frac{dy}{dx}
=
-\sqrt{\frac{1-y^2}{1-x^2}}
\]
Step 5: Conclusion.
Hence,
\[
\frac{dy}{dx} = -\sqrt{\frac{1-y^2}{1-x^2}}
\]