If \( y = \sin(xy) \), then find \( \frac{dy}{dx} \):
Show Hint
For implicit differentiation, differentiate both sides and use the product and chain rules carefully. Collect \( \frac{dy}{dx} \) terms on one side to solve.
Given:
\[
y = \sin(xy)
\]
Differentiate both sides with respect to \( x \):
\[
\frac{dy}{dx} = \cos(xy) \cdot \frac{d}{dx}(xy)
\]
Using product rule on \( xy \):
\[
\frac{d}{dx}(xy) = y + x \frac{dy}{dx}
\]
So,
\[
\frac{dy}{dx} = \cos(xy) \cdot \left( y + x \frac{dy}{dx} \right)
\]
Rearranging to solve for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = y \cos(xy) + x \cos(xy) \frac{dy}{dx}
\]
Bring terms involving \( \frac{dy}{dx} \) to one side:
\[
\frac{dy}{dx} - x \cos(xy) \frac{dy}{dx} = y \cos(xy)
\]
\[
\frac{dy}{dx} (1 - x \cos(xy)) = y \cos(xy)
\]
Therefore,
\[
\boxed{
\frac{dy}{dx} = \frac{y \cos(xy)}{1 - x \cos(xy)}
}
\]