We are given that \( y = \sec(\tan^{-1} x) \). To find \( \frac{dy}{dx} \), we will differentiate implicitly with respect to \( x \).
Step 1: Use the chain rule.
We know that:
\[
y = \sec(\tan^{-1} x).
\]
Let \( \theta = \tan^{-1} x \), so that \( y = \sec(\theta) \).
Now differentiate \( y = \sec(\theta) \) with respect to \( x \):
\[
\frac{dy}{dx} = \frac{d}{dx} \sec(\theta) = \sec(\theta) \tan(\theta) \frac{d\theta}{dx}.
\]
Next, we need to find \( \frac{d\theta}{dx} \).
Step 2: Differentiate \( \theta = \tan^{-1} x \).
We know that:
\[
\frac{d}{dx} \left( \tan^{-1} x \right) = \frac{1}{1 + x^2}.
\]
Thus,
\[
\frac{d\theta}{dx} = \frac{1}{1 + x^2}.
\]
Step 3: Substitute back to find \( \frac{dy}{dx} \).
Substituting \( \frac{d\theta}{dx} = \frac{1}{1 + x^2} \) into the expression for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \sec(\theta) \tan(\theta) \cdot \frac{1}{1 + x^2}.
\]
Now we need to express \( \sec(\theta) \) and \( \tan(\theta) \) in terms of \( x \).
Step 4: Find expressions for \( \sec(\theta) \) and \( \tan(\theta) \).
Since \( \theta = \tan^{-1} x \), we know that:
\[
\tan(\theta) = x.
\]
Using the identity \( \sec^2(\theta) = 1 + \tan^2(\theta) \), we find:
\[
\sec(\theta) = \sqrt{1 + x^2}.
\]
Thus, the derivative becomes:
\[
\frac{dy}{dx} = \sqrt{1 + x^2} \cdot x \cdot \frac{1}{1 + x^2}.
\]
Simplifying:
\[
\frac{dy}{dx} = \frac{x}{\sqrt{1 + x^2}}.
\]
Step 5: Evaluate at \( x = 1 \).
Now, substitute \( x = 1 \) into the derivative:
\[
\frac{dy}{dx} = \frac{1}{\sqrt{1 + 1^2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}.
\]
So the correct answer is \( \boxed{2} \).