Step 1: Use quotient rule. \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = x^2 + 3x + 4 \) and \( v = e^x \cos x \).
Step 2: Differentiate numerator and denominator. \[ \frac{du}{dx} = 2x + 3, \quad \frac{dv}{dx} = e^x \cos x - e^x \sin x \]
Step 3: Apply the quotient rule. \[ \frac{dy}{dx} = \frac{(2x+3)e^x \cos x - (x^2+3x+4)(e^x \cos x - e^x \sin x)}{(e^x \cos x)^2} \]
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]