Step 1: Simplify the given function.
Given
\[
y = e^{\sin(\cosec^{-1}x)}
\]
Using the identity
\[
\sin(\cosec^{-1}x) = \frac{1}{x}
\]
we get
\[
y = e^{\frac{1}{x}}
\]
Step 2: Differentiate with respect to \(x\).
\[
\frac{dy}{dx} = e^{\frac{1}{x}} \cdot \frac{d}{dx}\left(\frac{1}{x}\right)
\]
Step 3: Compute the derivative.
\[
\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}
\]
Step 4: Final expression.
\[
\frac{dy}{dx} = -\frac{e^{\frac{1}{x}}}{x^2}
\]