Question:

If \( y = e^{\sin(\cosec^{-1}x)} \), then \( \dfrac{dy}{dx} \) is

Show Hint

Always simplify inverse trigonometric expressions first before differentiating composite exponential functions.
Updated On: Jan 26, 2026
  • \( \dfrac{1}{e^x x^2} \)
  • \( -\dfrac{e^{\frac{1}{x}}}{x^2} \)
  • \( 0 \)
  • \( e^{\cos(\cosec^{-1}x)} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Simplify the given function.
Given \[ y = e^{\sin(\cosec^{-1}x)} \] Using the identity \[ \sin(\cosec^{-1}x) = \frac{1}{x} \] we get \[ y = e^{\frac{1}{x}} \] Step 2: Differentiate with respect to \(x\).
\[ \frac{dy}{dx} = e^{\frac{1}{x}} \cdot \frac{d}{dx}\left(\frac{1}{x}\right) \] Step 3: Compute the derivative.
\[ \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \] Step 4: Final expression.
\[ \frac{dy}{dx} = -\frac{e^{\frac{1}{x}}}{x^2} \]
Was this answer helpful?
0
0