We are given the function: \[ y = e^{3\log(2x+1)} \]
Step 1: Simplify the given expression Using the property of logarithms \( e^{\log(a)} = a \), we can simplify the expression for \( y \): \[ y = (2x + 1)^3 \]
Step 2: Differentiate \( y \) with respect to \( x \) Now, we differentiate \( y = (2x + 1)^3 \) using the chain rule: \[ \frac{dy}{dx} = 3(2x + 1)^2 \cdot \frac{d}{dx}(2x + 1) \] Since \( \frac{d}{dx}(2x + 1) = 2 \), we get: \[ \frac{dy}{dx} = 3 \cdot 2 \cdot (2x + 1)^2 = 6(2x + 1)^2 \]Step 3: Simplify the final expression Thus, the derivative is: \[ \frac{dy}{dx} = \frac{6e^{3\log(2x+1)}}{2x+1} \]
The correct option is (B) : \(6\frac{e^{3\log(2x+1)}}{2x+1}\)