Step 1: Express \( \csc(\cot^{-1} x) \) in terms of \( x \).
Let \( \theta = \cot^{-1} x \). Then:
\[
\cot \theta = x \quad \Rightarrow \quad \text{Adjacent side} = 1, \quad \text{Opposite side} = x, \quad \text{Hypotenuse} = \sqrt{1 + x^2}.
\]
Thus:
\[
\csc \theta = \frac{\text{Hypotenuse}}{\text{Opposite side}} = \frac{\sqrt{1 + x^2}}{x}.
\]
So:
\[
y = \csc(\cot^{-1} x) = \frac{\sqrt{1 + x^2}}{x}.
\]
Step 2: Differentiate \( y = \frac{\sqrt{1 + x^2}}{x} \).
Using the quotient rule:
\[
\frac{dy}{dx} = \frac{\frac{d}{dx}(\sqrt{1 + x^2}) \cdot x - \sqrt{1 + x^2} \cdot \frac{d}{dx}(x)}{x^2}.
\]
The derivative of \( \sqrt{1 + x^2} \) is:
\[
\frac{d}{dx} (\sqrt{1 + x^2}) = \frac{1}{2\sqrt{1 + x^2}} \cdot 2x = \frac{x}{\sqrt{1 + x^2}}.
\]
Substitute into the quotient rule:
\[
\frac{dy}{dx} = \frac{\left(\frac{x}{\sqrt{1 + x^2}} \cdot x\right) - \sqrt{1 + x^2}}{x^2}.
\]
Simplify:
\[
\frac{dy}{dx} = \frac{\frac{x^2}{\sqrt{1 + x^2}} - \sqrt{1 + x^2}}{x^2}.
\]
Combine terms under a common denominator:
\[
\frac{dy}{dx} = \frac{\frac{x^2 - (1 + x^2)}{\sqrt{1 + x^2}}}{x^2} = \frac{\frac{-1}{\sqrt{1 + x^2}}}{x^2}.
\]
Simplify further:
\[
\frac{dy}{dx} = -\frac{1}{x^2 \sqrt{1 + x^2}}.
\]
Step 3: Verify the given expression.
Substitute \( \frac{dy}{dx} \) into \( \sqrt{1 + x^2} \frac{dy}{dx} - x \):
\[
\sqrt{1 + x^2} \cdot \left(-\frac{1}{x^2 \sqrt{1 + x^2}}\right) - x = -\frac{1}{x^2} - x.
\]
Simplify:
\[
-\frac{1}{x^2} - x + x = 0.
\]
Step 4: Conclusion.
The given expression is verified:
\[
\boxed{\sqrt{1 + x^2} \frac{dy}{dx} - x = 0}.
\]