Step 1: Simplify the expression inside \(\cot^{-1}\).
Let
\[
t=\sqrt{\frac{1-\sin x}{1+\sin x}}
\]
Now use the identity:
\[
\frac{1-\sin x}{1+\sin x}=\left(\frac{1-\sin x}{\cos x}\right)^2
\]
So,
\[
t=\frac{1-\sin x}{\cos x}=\sec x-\tan x
\]
Step 2: Convert \(\cot^{-1}\) to \(\tan^{-1}\) form.
\[
y=\cot^{-1}(t)
\Rightarrow y=\tan^{-1}\left(\frac{1}{t}\right)
\]
\[
\frac{1}{t}=\frac{1}{\sec x-\tan x}=\sec x+\tan x
\]
So,
\[
y=\tan^{-1}(\sec x+\tan x)
\]
Step 3: Differentiate using the standard identity.
A known result is:
\[
\frac{d}{dx}\Big(\tan^{-1}(\sec x+\tan x)\Big)=\frac{1}{2}
\]
Step 4: Final conclusion.
Hence,
\[
\frac{dy}{dx}=\frac{1}{2}
\]