Given: \( y = (\cos(x^2))^2 \)
We need to find \( \frac{dy}{dx} \).
Step 1: Simplifying the function
\( y = \cos^2(x^2) \) can be written as:
\[ y = (\cos(u))^2 \quad \text{where} \quad u = x^2 \]
Step 2: Applying chain rule
Using the chain rule, we differentiate \( y = (\cos(u))^2 \). First, differentiate the outer function: \[ \frac{d}{du} \left[ (\cos(u))^2 \right] = 2\cos(u) \cdot (-\sin(u)) \] So, we get: \[ \frac{dy}{du} = -2\cos(u)\sin(u) \] Next, differentiate \( u = x^2 \) with respect to \( x \): \[ \frac{du}{dx} = 2x \]
Step 3: Combining the results
Now applying the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -2\cos(x^2) \sin(x^2) \times 2x \] Simplifying: \[ \frac{dy}{dx} = -4x \cos(x^2) \sin(x^2) \]
Step 4: Final Answer
The expression simplifies to \( -2x \sin(2x^2) \) (since \( 2\sin(A)\cos(A) = \sin(2A) \)).
The correct answer is (C).
List-I (Function) | List-II (Derivative w.r.t. x) | |
---|---|---|
(A) \( \frac{5^x}{\ln 5} \) | (I) \(5^x (\ln 5)^2\) | |
(B) \(\ln 5\) | (II) \(5^x \ln 5\) | |
(C) \(5^x \ln 5\) | (III) \(5^x\) | |
(D) \(5^x\) | (IV) 0 |
List-I | List-II |
---|---|
The derivative of \( \log_e x \) with respect to \( \frac{1}{x} \) at \( x = 5 \) is | (I) -5 |
If \( x^3 + x^2y + xy^2 - 21x = 0 \), then \( \frac{dy}{dx} \) at \( (1, 1) \) is | (II) -6 |
If \( f(x) = x^3 \log_e \frac{1}{x} \), then \( f'(1) + f''(1) \) is | (III) 5 |
If \( y = f(x^2) \) and \( f'(x) = e^{\sqrt{x}} \), then \( \frac{dy}{dx} \) at \( x = 0 \) is | (IV) 0 |