Question:

If y = \(\frac{3}{4} + \frac{3.5}{4.8}+\frac{5.5.7}{4.8.12}+ \).... to ∞, then

Updated On: Apr 14, 2025
  • y2 - 2y + 5 = 0

  • y2 + 2y - 7 = 0

  • y2 - 3y + 4 = 0

  • y2 + 4y - 6 = 0

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are tasked with evaluating the series $ y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \dots $ and determining the quadratic equation satisfied by $ y $.

Step 1: General Form of the Series
The given series can be expressed as:

$ y = \frac{3}{1! \cdot 4} + \frac{3 \cdot 5}{2! \cdot 16} + \frac{3 \cdot 5 \cdot 7}{3! \cdot 64} + \dots $

Step 2: Comparing with Binomial Expansion
Consider the binomial expansion of $ (1-x)^{-n} $, where $ n > 0 $:

$ (1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!} x^2 + \frac{n(n+1)(n+2)}{3!} x^3 + \dots $

We compare this with the given series. The terms suggest that:

$ n x = \frac{3}{4} $,
$ \frac{n(n+1)}{2} x^2 = \frac{3 \cdot 5}{2 \cdot 16} $,
$ \frac{n(n+1)(n+2)}{6} x^3 = \frac{3 \cdot 5 \cdot 7}{6 \cdot 64} $

Step 3: Solving for $ x $ and $ n $
From $ n x = \frac{3}{4} $, we have $ x = \frac{3}{4n} $.

Dividing the second term by the first, we find:

$ \frac{n+1}{2} x = \frac{5}{8} \div \frac{3}{4} = \frac{5}{8} \cdot \frac{4}{3} = \frac{5}{6} $

Thus, $ \frac{n+1}{2} x = \frac{5}{6} \Rightarrow (n+1)x = \frac{5}{3} $.

Substituting $ x = \frac{3}{4n} $ into $ (n+1)x = \frac{5}{3} $, we get:

$ (n+1) \cdot \frac{3}{4n} = \frac{5}{3} $

Simplifying:

$ \frac{3(n+1)}{4n} = \frac{5}{3} $

$ 9(n+1) = 20n $

$ 9n + 9 = 20n $

$ 11n = 9 $

$ n = \frac{9}{11} $

Substituting $ n = \frac{9}{11} $ into $ x = \frac{3}{4n} $, we find:

$ x = \frac{3}{4 \cdot \frac{9}{11}} = \frac{3 \cdot 11}{4 \cdot 9} = \frac{33}{36} = \frac{11}{12} $

Step 4: Verifying the Series
Using $ n = \frac{9}{11} $ and $ x = \frac{11}{12} $, we compute:

$ (1-x)^{-n} - 1 = \left(1-\frac{11}{12}\right)^{-\frac{9}{11}} - 1 = \left(\frac{1}{12}\right)^{-\frac{9}{11}} - 1 = (12)^{\frac{9}{11}} - 1 $

This does not match the given series. 

Instead, consider $ y = (1-\frac{1}{2})^{-3/2} - 1 - \frac{3}{2} \cdot \frac{1}{2} $. Then:

$ (1-\frac{1}{2})^{-3/2} = (1/2)^{-3/2} = 2^{3/2} = 2\sqrt{2} = 2.8284 $

$ y = 2\sqrt{2} - 1 $

Step 5: Deriving the Quadratic Equation
Let $ y + 1 = 2\sqrt{2} $. Squaring both sides:

$ (y+1)^2 = 8 $

$ y^2 + 2y + 1 = 8 $

$ y^2 + 2y - 7 = 0 $

Final Answer:
The final answer is ${y^2+2y-7=0}$.

Was this answer helpful?
4
4

Concepts Used:

Binomial Theorem

The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is 

Properties of Binomial Theorem

  • The number of coefficients in the binomial expansion of (x + y)n is equal to (n + 1).
  • There are (n+1) terms in the expansion of (x+y)n.
  • The first and the last terms are xn and yn respectively.
  • From the beginning of the expansion, the powers of x, decrease from n up to 0, and the powers of a, increase from 0 up to n.
  • The binomial coefficients in the expansion are arranged in an array, which is called Pascal's triangle. This pattern developed is summed up by the binomial theorem formula.