If y = \(\frac{3}{4} + \frac{3.5}{4.8}+\frac{5.5.7}{4.8.12}+ \).... to ∞, then
y2 - 2y + 5 = 0
y2 + 2y - 7 = 0
y2 - 3y + 4 = 0
y2 + 4y - 6 = 0
We are tasked with evaluating the series $ y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \dots $ and determining the quadratic equation satisfied by $ y $.
Step 1: General Form of the Series
The given series can be expressed as:
$ y = \frac{3}{1! \cdot 4} + \frac{3 \cdot 5}{2! \cdot 16} + \frac{3 \cdot 5 \cdot 7}{3! \cdot 64} + \dots $
Step 2: Comparing with Binomial Expansion
Consider the binomial expansion of $ (1-x)^{-n} $, where $ n > 0 $:
$ (1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!} x^2 + \frac{n(n+1)(n+2)}{3!} x^3 + \dots $
We compare this with the given series. The terms suggest that:
$ n x = \frac{3}{4} $,
$ \frac{n(n+1)}{2} x^2 = \frac{3 \cdot 5}{2 \cdot 16} $,
$ \frac{n(n+1)(n+2)}{6} x^3 = \frac{3 \cdot 5 \cdot 7}{6 \cdot 64} $
Step 3: Solving for $ x $ and $ n $
From $ n x = \frac{3}{4} $, we have $ x = \frac{3}{4n} $.
Dividing the second term by the first, we find:
$ \frac{n+1}{2} x = \frac{5}{8} \div \frac{3}{4} = \frac{5}{8} \cdot \frac{4}{3} = \frac{5}{6} $
Thus, $ \frac{n+1}{2} x = \frac{5}{6} \Rightarrow (n+1)x = \frac{5}{3} $.
Substituting $ x = \frac{3}{4n} $ into $ (n+1)x = \frac{5}{3} $, we get:
$ (n+1) \cdot \frac{3}{4n} = \frac{5}{3} $
Simplifying:
$ \frac{3(n+1)}{4n} = \frac{5}{3} $
$ 9(n+1) = 20n $
$ 9n + 9 = 20n $
$ 11n = 9 $
$ n = \frac{9}{11} $
Substituting $ n = \frac{9}{11} $ into $ x = \frac{3}{4n} $, we find:
$ x = \frac{3}{4 \cdot \frac{9}{11}} = \frac{3 \cdot 11}{4 \cdot 9} = \frac{33}{36} = \frac{11}{12} $
Step 4: Verifying the Series
Using $ n = \frac{9}{11} $ and $ x = \frac{11}{12} $, we compute:
$ (1-x)^{-n} - 1 = \left(1-\frac{11}{12}\right)^{-\frac{9}{11}} - 1 = \left(\frac{1}{12}\right)^{-\frac{9}{11}} - 1 = (12)^{\frac{9}{11}} - 1 $
This does not match the given series.
Instead, consider $ y = (1-\frac{1}{2})^{-3/2} - 1 - \frac{3}{2} \cdot \frac{1}{2} $. Then:
$ (1-\frac{1}{2})^{-3/2} = (1/2)^{-3/2} = 2^{3/2} = 2\sqrt{2} = 2.8284 $
$ y = 2\sqrt{2} - 1 $
Step 5: Deriving the Quadratic Equation
Let $ y + 1 = 2\sqrt{2} $. Squaring both sides:
$ (y+1)^2 = 8 $
$ y^2 + 2y + 1 = 8 $
$ y^2 + 2y - 7 = 0 $
Final Answer:
The final answer is ${y^2+2y-7=0}$.
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is