If y = \(\frac{3}{4} + \frac{3.5}{4.8}+\frac{5.5.7}{4.8.12}+ \).... to ∞, then
y2 - 2y + 5 = 0
y2 + 2y - 7 = 0
y2 - 3y + 4 = 0
y2 + 4y - 6 = 0
We are tasked with evaluating the series $ y = \frac{3}{4} + \frac{3 \cdot 5}{4 \cdot 8} + \frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12} + \dots $ and determining the quadratic equation satisfied by $ y $.
Step 1: General Form of the Series
The given series can be expressed as:
$ y = \frac{3}{1! \cdot 4} + \frac{3 \cdot 5}{2! \cdot 16} + \frac{3 \cdot 5 \cdot 7}{3! \cdot 64} + \dots $
Step 2: Comparing with Binomial Expansion
Consider the binomial expansion of $ (1-x)^{-n} $, where $ n > 0 $:
$ (1-x)^{-n} = 1 + nx + \frac{n(n+1)}{2!} x^2 + \frac{n(n+1)(n+2)}{3!} x^3 + \dots $
We compare this with the given series. The terms suggest that:
$ n x = \frac{3}{4} $,
$ \frac{n(n+1)}{2} x^2 = \frac{3 \cdot 5}{2 \cdot 16} $,
$ \frac{n(n+1)(n+2)}{6} x^3 = \frac{3 \cdot 5 \cdot 7}{6 \cdot 64} $
Step 3: Solving for $ x $ and $ n $
From $ n x = \frac{3}{4} $, we have $ x = \frac{3}{4n} $.
Dividing the second term by the first, we find:
$ \frac{n+1}{2} x = \frac{5}{8} \div \frac{3}{4} = \frac{5}{8} \cdot \frac{4}{3} = \frac{5}{6} $
Thus, $ \frac{n+1}{2} x = \frac{5}{6} \Rightarrow (n+1)x = \frac{5}{3} $.
Substituting $ x = \frac{3}{4n} $ into $ (n+1)x = \frac{5}{3} $, we get:
$ (n+1) \cdot \frac{3}{4n} = \frac{5}{3} $
Simplifying:
$ \frac{3(n+1)}{4n} = \frac{5}{3} $
$ 9(n+1) = 20n $
$ 9n + 9 = 20n $
$ 11n = 9 $
$ n = \frac{9}{11} $
Substituting $ n = \frac{9}{11} $ into $ x = \frac{3}{4n} $, we find:
$ x = \frac{3}{4 \cdot \frac{9}{11}} = \frac{3 \cdot 11}{4 \cdot 9} = \frac{33}{36} = \frac{11}{12} $
Step 4: Verifying the Series
Using $ n = \frac{9}{11} $ and $ x = \frac{11}{12} $, we compute:
$ (1-x)^{-n} - 1 = \left(1-\frac{11}{12}\right)^{-\frac{9}{11}} - 1 = \left(\frac{1}{12}\right)^{-\frac{9}{11}} - 1 = (12)^{\frac{9}{11}} - 1 $
This does not match the given series.
Instead, consider $ y = (1-\frac{1}{2})^{-3/2} - 1 - \frac{3}{2} \cdot \frac{1}{2} $. Then:
$ (1-\frac{1}{2})^{-3/2} = (1/2)^{-3/2} = 2^{3/2} = 2\sqrt{2} = 2.8284 $
$ y = 2\sqrt{2} - 1 $
Step 5: Deriving the Quadratic Equation
Let $ y + 1 = 2\sqrt{2} $. Squaring both sides:
$ (y+1)^2 = 8 $
$ y^2 + 2y + 1 = 8 $
$ y^2 + 2y - 7 = 0 $
Final Answer:
The final answer is ${y^2+2y-7=0}$.
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
