>
Exams
>
Mathematics
>
Derivatives
>
if y 1 x 2 then dy dx is equal to
Question:
If
$ y={{\cot }^{-1}}\left( \tan \frac{x}{2} \right), $
then
$ \frac{dy}{dx} $
is equal to
KEAM
Updated On:
Jun 7, 2024
$ \frac{1}{2} $
$ 0 $
$ \frac{x}{2} $
$ -\frac{1}{2} $
Hide Solution
Verified By Collegedunia
The Correct Option is
D
Solution and Explanation
$ y={{\cot }^{-1}}\left( \tan \frac{x}{2} \right) $
$ y={{\cot }^{-1}}\cot \left( \frac{\pi }{2}-\frac{x}{2} \right) $
$ y=\frac{\pi }{2}-\frac{x}{2} $
Differentiating w.r.t.
$ x $
on both sides,
$ \frac{dy}{dx}=-\frac{1}{2} $
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Derivatives
Given \( f'(1) = 3 \), \( f(1) = 1 \), and
\[ y = f\left(f(f(x))\right) + \left(f(x)\right)^2, \]
then find
\( \frac{dy}{dx} \)
at
\( x = 1 \).
MHT CET - 2025
Mathematics
Derivatives
View Solution
If \( y = x^x + x^x \), then find \( \frac{dy}{dx} \):
MHT CET - 2025
Mathematics
Derivatives
View Solution
The function \( f(x) = \tan x - x \)
KCET - 2025
Mathematics
Derivatives
View Solution
The derivative of \( \sin x \) with respect to \( \log x \) is:
KCET - 2025
Mathematics
Derivatives
View Solution
If \( y = a \sin^3 t \), \( x = a \cos^3 t \), then \( \frac{dy}{dx} \) at \( t = \frac{3\pi}{4} \) is:
KCET - 2025
Mathematics
Derivatives
View Solution
View More Questions
Questions Asked in KEAM exam
If \( -5<x \leq -1 \), then \( -21 \leq 5x + 4 \leq b \). Find \( b \).
KEAM - 2025
Algebra
View Solution
Solve the system of equations:
\[ \begin{bmatrix} 4 & 9 \\ 12 & -3 \\ 8 & -2 \end{bmatrix} \begin{bmatrix} 7 \\ 9 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \]
KEAM - 2025
Linear Algebra
View Solution
Evaluate the integral:
\[ \int e^x \sec(x) \left( \tan(x) + 1 \right) \, dx \]
KEAM - 2025
Integration
View Solution
Solve for \( a \) and \( b \) given the equations:
\[ \sin x + \sin y = a, \quad \cos x + \cos y = b, \quad x + y = \frac{2\pi}{3} \]
KEAM - 2025
Trigonometry
View Solution
Forces acting on 2 bodies of masses 2kg and 3kg are same. What is the ratio of their acceleration?
KEAM - 2025
laws of motion
View Solution
View More Questions