If xy = e(x – y) , then \(\frac {dy}{dx}\) =?
\(\frac {log \ x}{(1+ log x)^2}\)
\(\frac {log \ x}{(1+ log x)}\)
\(\frac {xlog \ x}{(1+ log x)^2}\)
\(\frac {log \ x}{x(1+ log x)^2}\)
xy = e(x−y)
On taking log both sides:
logxy = log e(x−y).
ylogx = (x−y)log e
ylogx = x−y
y+ylogx = x;
y = \(\frac {x}{1+logx}\)
On differentiating both sides with respect to x:
\(\frac {dy}{dx}\) = \(\frac {(1+log \ x)1- x(\frac{1}{x})}{(1+ log x)^2}\)
\(\frac {dy}{dx}\) = \(\frac {1+log \ x-1}{(1+ log x)^2}\)
\(\frac {dy}{dx}\) = \(\frac {log \ x}{(1+ log x)^2}\)
Therefore, the correct option is (A) \(\frac {log \ x}{(1+ log x)^2}\).
Let $\alpha,\beta\in\mathbb{R}$ be such that the function \[ f(x)= \begin{cases} 2\alpha(x^2-2)+2\beta x, & x<1 \\ (\alpha+3)x+(\alpha-\beta), & x\ge1 \end{cases} \] is differentiable at all $x\in\mathbb{R}$. Then $34(\alpha+\beta)$ is equal to}
Which part of root absorb mineral?