If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is:
Let $[r]$ denote the largest integer not exceeding $r$, and the roots of the equation $ 3z^2 + 6z + 5 + \alpha(x^2 + 2x + 2) = 0 $ are complex numbers whenever $ \alpha > L $ and $ \alpha < M $. If $ (L - M) $ is minimum, then the greatest value of $[r]$ such that $ Ly^2 + My + r < 0 $ for all $ y \in \mathbb{R} $ is:
A differential equation is an equation that contains one or more functions with its derivatives. The derivatives of the function define the rate of change of a function at a point. It is mainly used in fields such as physics, engineering, biology and so on.
The first-order differential equation has a degree equal to 1. All the linear equations in the form of derivatives are in the first order. It has only the first derivative such as dy/dx, where x and y are the two variables and is represented as: dy/dx = f(x, y) = y’
The equation which includes second-order derivative is the second-order differential equation. It is represented as; d/dx(dy/dx) = d2y/dx2 = f”(x) = y”.
Differential equations can be divided into several types namely