Problem: Given \( x + y = k \), minimize \( S = x^2 + y^2 \).
Step 1: Express one variable in terms of the other
\[ y = k - x \]
Substitute into \( S \):
\[ S(x) = x^2 + (k - x)^2 = x^2 + (k^2 - 2kx + x^2) = 2x^2 - 2kx + k^2 \]
This is a quadratic expression in \( x \):
\[ S(x) = 2x^2 - 2kx + k^2 \]
Since the coefficient of \( x^2 \) is positive (2), the parabola opens upward. Therefore, the minimum value occurs at the vertex.
Vertex formula:
\[ x = \frac{-(-2k)}{2 \cdot 2} = \frac{2k}{4} = \frac{k}{2} \Rightarrow y = k - x = \frac{k}{2} \]
Thus, the minimum occurs when:
\[ x = y = \frac{k}{2} \]
Optional: Use calculus to verify
\[ S'(x) = \frac{d}{dx}(2x^2 - 2kx + k^2) = 4x - 2k \Rightarrow 4x - 2k = 0 \Rightarrow x = \frac{k}{2} \] \[ S''(x) = 4 > 0 \Rightarrow \text{Minimum confirmed} \]
✅ Final Answer:
This matches option (c).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______