If \( x(t) \) is the solution to the differential equation \[ \frac{dx}{dt} = x t^3 + x t, \text{ for } t > 0, \text{ satisfying } x(0) = 1, \] then the value of \( x(\sqrt{2}) \) is .......... (correct up to two decimal places).
Step 1: Rewrite the differential equation.
We are given the differential equation \( \frac{dx}{dt} = x t^3 + x t \). This can be written as:
\[
\frac{dx}{dt} = x(t) (t^3 + t).
\]
This is a separable differential equation.
Step 2: Separate variables.
We separate the variables and integrate:
\[
\frac{1}{x(t)} \, dx = (t^3 + t) \, dt.
\]
Step 3: Integrate both sides.
Integrating both sides:
\[
\int \frac{1}{x(t)} \, dx = \int (t^3 + t) \, dt,
\]
\[
\ln |x(t)| = \frac{t^4}{4} + \frac{t^2}{2} + C.
\]
Step 4: Solve for the constant.
Using the initial condition \( x(0) = 1 \), we solve for \( C \):
\[
\ln 1 = 0 + 0 + C $\Rightarrow$ C = 0.
\]
Step 5: Solve for \( x(t) \).
Thus, we have:
\[
x(t) = e^{\frac{t^4}{4} + \frac{t^2}{2}}.
\]
Step 6: Calculate \( x(\sqrt{2}) \).
Substituting \( t = \sqrt{2} \) into the expression for \( x(t) \), we get:
\[
x(\sqrt{2}) = e^{\frac{(\sqrt{2})^4}{4} + \frac{(\sqrt{2})^2}{2}} = e^{\frac{4}{4} + \frac{2}{2}} = e^{1 + 1} = e^2.
\]
Thus, \( x(\sqrt{2}) \approx \boxed{7.389} \).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.