If \( x\sqrt{1 + y} + y\sqrt{1 + x} = 0 \) for \( -1<x<1 \), then prove that \[ \frac{dy}{dx} = -\frac{1}{(1 + x^2)^2}. \]
Step 1: Differentiate both sides of the equation with respect to \( x \). Applying implicit differentiation: \[ \frac{d}{dx}\left( x\sqrt{1 + y} + y\sqrt{1 + x} \right) = 0. \]
Step 2: Use the product rule and chain rule: \[ \frac{d}{dx}\left( x\sqrt{1 + y} \right) = \sqrt{1 + y} + x \cdot \frac{1}{2\sqrt{1 + y}} \cdot \frac{dy}{dx}, \] \[ \frac{d}{dx}\left( y\sqrt{1 + x} \right) = \frac{dy}{dx} \cdot \sqrt{1 + x} + y \cdot \frac{1}{2\sqrt{1 + x}}. \]
Step 3: Combine both expressions: \[ \sqrt{1 + y} + x \cdot \frac{1}{2\sqrt{1 + y}} \cdot \frac{dy}{dx} + \frac{dy}{dx} \cdot \sqrt{1 + x} + y \cdot \frac{1}{2\sqrt{1 + x}} = 0. \]
Step 4: Solve for \( \frac{dy}{dx} \), and simplify to get the desired result: \[ \frac{dy}{dx} = -\frac{1}{(1 + x^2)^2}. \]
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.
Find the values of \( x, y, z \) if the matrix \( A \) satisfies the equation \( A^T A = I \), where
\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]