Step 1: Establish the relationships between Cartesian and polar coordinates.
We are given \(x = r\cos\theta\) and \(y = r\sin\theta\). The inverse relationships are \(r^2 = x^2 + y^2\) and \(\theta = \tan^{-1}(y/x)\).
Step 2: Calculate the partial derivatives.
- A. \(\frac{\partial r}{\partial x}\): Differentiate \(r^2 = x^2 + y^2\) with respect to \(x\):
\(2r \frac{\partial r}{\partial x} = 2x \implies \frac{\partial r}{\partial x} = \frac{x}{r}\). This matches III.
- B. \(\frac{\partial r}{\partial y}\): Differentiate \(r^2 = x^2 + y^2\) with respect to \(y\):
\(2r \frac{\partial r}{\partial y} = 2y \implies \frac{\partial r}{\partial y} = \frac{y}{r}\). This matches II.
Step 3: Calculate the Jacobians.
- C. \(\frac{\partial(x,y){\partial(r,\theta)}\):} This is the determinant of the Jacobian matrix for the transformation from polar to Cartesian coordinates.
\[ J = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta - (-r\sin^2\theta) = r(\cos^2\theta + \sin^2\theta) = r \]
This matches IV.
- D. \(\frac{\partial(r,\theta){\partial(x,y)}\):} This is the inverse of the Jacobian calculated in C.
\[ \frac{\partial(r,\theta)}{\partial(x,y)} = \left(\frac{\partial(x,y)}{\partial(r,\theta)}\right)^{-1} = \frac{1}{r} \]
This matches I.
Step 4: Formulate the correct matching sequence.
The matches are: A\(\rightarrow\)III, B\(\rightarrow\)II, C\(\rightarrow\)IV, D\(\rightarrow\)I. This corresponds to option (2).