To determine when the expression \[ \sqrt{\log_e\left(\frac{4x - x^2}{3}\right)} \] is a real number, we must ensure the value inside the square root is non-negative.
\[ \log_e\left(\frac{4x - x^2}{3}\right) \geq 0 \] This implies: \[ \frac{4x - x^2}{3} \geq 1 \] Multiplying both sides by 3: \[ 4x - x^2 \geq 3 \] Rearranging: \[ x^2 - 4x + 3 \leq 0 \]
Factor the quadratic: \[ x^2 - 4x + 3 = (x - 1)(x - 3) \] We now solve: \[ (x - 1)(x - 3) \leq 0 \] This inequality holds when: \[ 1 \leq x \leq 3 \]
The domain of the expression is: \[ \boxed{1 \leq x \leq 3} \]
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: