If the line segment joining the points \( (1,0) \) and \( (0,1) \) subtends an angle of \( 45^\circ \) at a variable point \( P \), then the equation of the locus of \( P \) is:
If the origin is shifted to a point \( P \) by the translation of axes to remove the \( y \)-term from the equation \( x^2 - y^2 + 2y - 1 = 0 \), then the transformed equation of it is:
A line \( L \) intersects the lines \( 3x - 2y - 1 = 0 \) and \( x + 2y + 1 = 0 \) at the points \( A \) and \( B \). If the point \( (1,2) \) bisects the line segment \( AB \) and \( \frac{a}{b} x + \frac{b}{a} y = 1 \) is the equation of the line \( L \), then \( a + 2b + 1 = ? \)