Given: \(X\) is a Poisson random variable with mean \( \lambda = 3 \).
The probability mass function (PMF) of a Poisson distribution is:
\[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \] So, for this case: \[ P(X = k) = \frac{e^{-3} \cdot 3^k}{k!} \]
We are asked to compute:
\[ P(|X - 3| < 2) \]
Step 1: Interpret the inequality
\[ |X - 3| < 2 \Rightarrow -2 < X - 3 < 2 \Rightarrow 1 < X < 5 \] Since \(X\) takes only integer values, this means: \[ X = 2, 3, 4 \]
Step 2: Calculate each probability
Step 3: Add the probabilities
\[ P(|X - 3| < 2) = \left( \frac{9}{2} + \frac{9}{2} + \frac{27}{8} \right) e^{-3} = \left( 9 + \frac{27}{8} \right)e^{-3} = \frac{99}{8}e^{-3} \]
Final Answer:
This matches the answer marked correct in the options (option b).
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :