Given: \(X\) is a Poisson random variable with mean \( \lambda = 3 \).
The probability mass function (PMF) of a Poisson distribution is:
\[ P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!} \] So, for this case: \[ P(X = k) = \frac{e^{-3} \cdot 3^k}{k!} \]
We are asked to compute:
\[ P(|X - 3| < 2) \]
Step 1: Interpret the inequality
\[ |X - 3| < 2 \Rightarrow -2 < X - 3 < 2 \Rightarrow 1 < X < 5 \] Since \(X\) takes only integer values, this means: \[ X = 2, 3, 4 \]
Step 2: Calculate each probability
Step 3: Add the probabilities
\[ P(|X - 3| < 2) = \left( \frac{9}{2} + \frac{9}{2} + \frac{27}{8} \right) e^{-3} = \left( 9 + \frac{27}{8} \right)e^{-3} = \frac{99}{8}e^{-3} \]
Final Answer:
This matches the answer marked correct in the options (option b).
If A is any event associated with sample space and if E1, E2, E3 are mutually exclusive and exhaustive events. Then which of the following are true?
(A) \(P(A) = P(E_1)P(E_1|A) + P(E_2)P(E_2|A) + P(E_3)P(E_3|A)\)
(B) \(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + P(A|E_3)P(E_3)\)
(C) \(P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{j=1}^{3} P(A|E_j)P(E_j)}, \; i=1,2,3\)
(D) \(P(A|E_i) = \frac{P(E_i|A)P(E_i)}{\sum_{j=1}^{3} P(E_i|A)P(E_j)}, \; i=1,2,3\)
Choose the correct answer from the options given below: