Proof: Since \( y = g(t) \), \( x = f(t) \), \( \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \).
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \frac{dx}{dt} \neq 0.
\]
Hence: \( x = \sin t \), \( y = \cos t \).
\[
\frac{dx}{dt} = \cos t, \frac{dy}{dt} = -\sin t.
\]
\[
\frac{dy}{dx} = \frac{-\sin t}{\cos t} = -\tan t.
\]
Answer: Proved; \( \frac{dy}{dx} = -\tan t \).