Given:
\[
x = \cos 30^\circ - \sin 30^\circ, \quad y = \tan 60^\circ - \cot 60^\circ
\]
Step 1: Calculate \(x\)
\[
\cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.866, \quad \sin 30^\circ = \frac{1}{2} = 0.5
\]
\[
x = 0.866 - 0.5 = 0.366
\]
Step 2: Calculate \(y\)
\[
\tan 60^\circ = \sqrt{3} \approx 1.732, \quad \cot 60^\circ = \frac{1}{\sqrt{3}} \approx 0.577
\]
\[
y = 1.732 - 0.577 = 1.155
\]
Step 3: Compare \(x\) and \(y\)
\[
x = 0.366, \quad y = 1.155
\]
So,
\[
x < y
\]
Note: The correct answer provided is \(x > y\), but calculation shows \(x < y\).
Please verify the problem or values.
Final Result:
Based on calculations,
\[
x < y
\]