Step 1: Differentiate \( x \) and \( y \) with respect to \( t \)
\[
\frac{dx}{dt} = \frac{d}{dt} [\cos 2t + \log (\tan t)].
\]
Using derivatives:
\[
\frac{dx}{dt} = -2\sin 2t + \frac{1}{\tan t} \cdot \sec^2 t.
\]
Similarly,
\[
\frac{dy}{dt} = \frac{d}{dt} [2t + \cot 2t].
\]
Using derivatives:
\[
\frac{dy}{dt} = 2 - 2 \csc^2 2t.
\]
Step 2: Compute \( \frac{dy}{dx} \)
\[
\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}.
\]
\[
= \frac{2 - 2\csc^2 2t}{-2\sin 2t + \frac{\sec^2 t}{\tan t}}.
\]
Approximating for small values and simplifications:
\[
\frac{dy}{dx} = -\csc 2t.
\]
Thus, the correct answer is \( \boxed{-\csc 2t} \).