If x \(\begin{bmatrix}2\\3\end{bmatrix}\)+y \(\begin{bmatrix}-1\\1\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\),find values of x and y.
x \(\begin{bmatrix}2\\3\end{bmatrix}\)+y \(\begin{bmatrix}-1\\1\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2x\\3x\end{bmatrix}+\begin{bmatrix}-y\\y\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2x-y\\3x+y\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we get:
2x − y = 10 and 3x + y = 5
Adding these two equations, we have:
5x = 15
\(\Rightarrow\) x = 3
Now, 3x + y = 5
\(\Rightarrow\) y = 5 − 3x
\(\Rightarrow\) y = 5 − 9 = −4
∴x = 3 and y = −4
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)