If x \(\begin{bmatrix}2\\3\end{bmatrix}\)+y \(\begin{bmatrix}-1\\1\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\),find values of x and y.
x \(\begin{bmatrix}2\\3\end{bmatrix}\)+y \(\begin{bmatrix}-1\\1\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2x\\3x\end{bmatrix}+\begin{bmatrix}-y\\y\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\)
\(\Rightarrow \begin{bmatrix}2x-y\\3x+y\end{bmatrix}\)=\(\begin{bmatrix}10\\5\end{bmatrix}\)
Comparing the corresponding elements of these two matrices, we get:
2x − y = 10 and 3x + y = 5
Adding these two equations, we have:
5x = 15
\(\Rightarrow\) x = 3
Now, 3x + y = 5
\(\Rightarrow\) y = 5 − 3x
\(\Rightarrow\) y = 5 − 9 = −4
∴x = 3 and y = −4
Let \[ f(x)=\int \frac{7x^{10}+9x^8}{(1+x^2+2x^9)^2}\,dx \] and $f(1)=\frac14$. Given that 
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?