Question:

If x and y are non-negative integers such that x+9=z,y+1=zx + 9 = z, y + 1 = z and x+y<z+5x + y < z + 5, then the maximum possible value of 2x+y2x + y equals

Updated On: May 8, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution - 1

Given x+9=z=y+1x+9=z=y+1 and x+y<z+5x+y<z+5

(z9)+(z1)<z+5⇒ (z-9)+(z-1)<z+5

z<15⇒ z<15

Hence the maximum value of  z=14z=14, max of x=5x=5 and max of y=13y=13

Required answer, 2x+y=2×5+13=232x+y=2×5+13=23

Was this answer helpful?
0
0
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Given:
Equation 1. x+9=zx+9=z
Equation 2. y+1=zy+1=z
Equation 3. x+y<z+5x+y\lt z+5
Now From equation 1 and 2:
x=z9x=z-9
y=z1y=z-1
Now put these expressions for x and y in equation 3
(z9)+(z1)<z+5(z-9)+(z-1)\lt z+5
2z10<z+52z-10\lt z+5
z<15z\lt15
Now, the maximum possible value can't be 15 or greater than 15. So, less than 15 is 14.
z=14z=14
We need to maximize
2x+y2x+y
2(z9)+(z1)  =  3z192(z-9)+(z-1) \;=\;3z-19
Now put the value of z
3(14)19=233(14)-19 =23

So, the answer is 23.

Was this answer helpful?
0
0