Given the equations:
\(x + 9 = z = y + 1\)
and the inequality: \(x + y < z + 5\)
From \(x + 9 = z\), we get: \(x = z - 9\)
From \(y + 1 = z\), we get: \(y = z - 1\)
Substituting into \(x + y < z + 5\):
\((z - 9) + (z - 1) < z + 5\)
\(2z - 10 < z + 5\)
Subtract \(z\) from both sides:
\(z - 10 < 5\) ⇒ \(z < 15\)
Since \(z < 15\), the maximum possible integer value of \(z\) is \(14\)
\(x = z - 9 = 14 - 9 = 5\)
\(y = z - 1 = 14 - 1 = 13\)
Required expression: \(2x + y = 2 \times 5 + 13 = 10 + 13 = \boxed{23}\)
Given equations:
From Equation 1: \(x = z - 9\)
From Equation 2: \(y = z - 1\)
\((z - 9) + (z - 1) < z + 5\)
\(2z - 10 < z + 5\)
Subtract \(z\) from both sides:
\(z - 10 < 5 \Rightarrow z < 15\)
The maximum possible integer value for \(z\) is \(14\).
Using \(x = z - 9\) and \(y = z - 1\):
\(2x + y = 2(z - 9) + (z - 1) = 2z - 18 + z - 1 = 3z - 19\)
Substitute \(z = 14\):
\(3 \times 14 - 19 = 42 - 19 = \boxed{23}\)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
When $10^{100}$ is divided by 7, the remainder is ?