We are given the functions: \[ x = \sqrt{10 \cos^{-1} \theta}, \quad y = \sqrt{10 \sin^{-1} \theta}. \] To find \( \frac{dy}{dx} \), we will use the chain rule. First, differentiate \( x \) and \( y \) with respect to \( \theta \). For \( x = \sqrt{10 \cos^{-1} \theta} \), we differentiate with respect to \( \theta \): \[ \frac{dx}{d\theta} = \frac{1}{2} \cdot 10^{-1/2} \cdot \frac{d}{d\theta} (\cos^{-1} \theta) = \frac{1}{2} \cdot \frac{10^{1/2}}{1 - \theta^2}. \] Similarly, for \( y = \sqrt{10 \sin^{-1} \theta} \), we differentiate: \[ \frac{dy}{d\theta} = \frac{1}{2} \cdot 10^{-1/2} \cdot \frac{d}{d\theta} (\sin^{-1} \theta) = \frac{1}{2} \cdot \frac{10^{1/2}}{\sqrt{1 - \theta^2}}. \] Now, \( \frac{dy}{dx} = \frac{dy}{d\theta} \div \frac{dx}{d\theta} \): \[ \frac{dy}{dx} = \frac{\frac{1}{2} \cdot \frac{10^{1/2}}{\sqrt{1 - \theta^2}}}{\frac{1}{2} \cdot \frac{10^{1/2}}{1 - \theta^2}} = \frac{-y}{x}. \]
So, the correct option is (E) : \(\frac{-y}{x}\)
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.
Show that \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in \( \left[ 0, \frac{\pi}{4} \right] \).