Given the equation \(x+1=x^2\) with \(x>0\), the objective is to determine the value of \(2x^4.\)
To find \(2x^4\), we first solve for \(x:\)
\(x+1=x^2\)
\(⇒x^2−x−1=0\)
\(⇒x^2−x+\frac{1}{4}=\frac{5}{4}\)
\(⇒ \left(x−\frac{1}{2}\right)^2=\frac{5}{4}\)
\(⇒x−\frac{1}{2}=±\sqrt{\frac{5}{4}}\)
\(⇒x=\frac{1}{2}±\sqrt{\frac{5}{4}}\)
Now, expressing \(2x^4:\)
\((x+1)^2=(x^2)^2\)
\(⇒x^2+2x+1=x^4\)
\(⇒3x+2=x^4\)
\(⇒6x+4=2x^4\)
Substituting the found values of \(x=\frac{1}{2}±\sqrt{\frac{5}{4}}:\)
\(6(1+\sqrt{\frac{5}{2}})+4=2x^4\)
\(⇒3+3\sqrt{5}+4=2x^4\)
\(⇒7+3\sqrt{5}=2x^4\)
Hence, if \(x+1=x^2\) and \(x>0\), then \(2x^4\) is equal to \(7+3\sqrt{5}.\)
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \( (\alpha, \beta) \), then \( \beta - 2\alpha \) is equal to
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .