Given the equation \(x + 1 = x^2\) and \(x > 0\), we are to find the value of \(2x^4\).
First, solve the equation:
\(x^2 - x - 1 = 0\)
Using the quadratic formula, \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), with \(a = 1\), \(b = -1\), and \(c = -1\):
\(x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}\)
Since \(x > 0\), we take \(x = \frac{1 + \sqrt{5}}{2}\).
Next, calculate \(2x^4\):
First, find \(x^2\):
\(x^2 = (x+1) = \left(\frac{1 + \sqrt{5}}{2} + 1\right) = \frac{3 + \sqrt{5}}{2}\)
Now, find \(x^4\) by squaring \(x^2\):
\((x^2)^2 = \left(\frac{3 + \sqrt{5}}{2}\right)^2\)
Using \((a + b)^2 = a^2 + 2ab + b^2\), we have:
\(a = 3/2\), \(b = \sqrt{5}/2\)
\((x^2)^2 = \left(\frac{3}{2}\right)^2 + 2 \cdot \frac{3}{2} \cdot \frac{\sqrt{5}}{2} + \left(\frac{\sqrt{5}}{2}\right)^2\)
\((x^2)^2 = \frac{9}{4} + \frac{3\sqrt{5}}{2} + \frac{5}{4}\)
\((x^2)^2 = \frac{14}{4} + \frac{3\sqrt{5}}{2} = \frac{7}{2} + \frac{3\sqrt{5}}{2}\)
\(x^4 = \frac{7 + 3\sqrt{5}}{2}\)
Finally, compute \(2x^4\):
\(2x^4 = 2 \cdot \frac{7 + 3\sqrt{5}}{2}\)
\(2x^4 = 7 + 3\sqrt{5}\)
Thus, the value of \(2x^4\) is \(7 + 3\sqrt{5}\).