Step 1: Use the formula for volume of a parallelepiped.
The volume is given by
\[
V = \left| (\vec u \times \vec v) \cdot (\vec u + \vec w \times \vec v + \vec w) \right|
\]
Equivalently, the volume is the absolute value of the scalar triple product.
Step 2: Find \(\vec u \times \vec v\).
\[
\vec u =
\begin{vmatrix}
\hat i & \hat j & \hat k \\
1 & -2 & 1
\end{vmatrix},
\quad
\vec v =
\begin{vmatrix}
3 & 0 & 1
\end{vmatrix}
\]
\[
\vec u \times \vec v =
\begin{vmatrix}
\hat i & \hat j & \hat k \\
1 & -2 & 1 \\
3 & 0 & 1
\end{vmatrix}
= (-2)\hat i + 2\hat j + 6\hat k
\]
Step 3: Find \(\vec u + \vec w\) and \(\vec v + \vec w\).
\[
\vec u + \vec w = (1, -1, 0), \quad
\vec v + \vec w = (3, 1, 0)
\]
Step 4: Compute the scalar triple product.
\[
V = \left|
\begin{vmatrix}
-2 & 2 & 6 \\
1 & -1 & 0\\
3 & 1 & 0
\end{vmatrix}
\right|
= |24|
\]